DOMINION ROAD TOWNHOUSE DEVELOPMENT 3303 DOMINION ROAD, FORT ERIE

STORM WATER MANAGEMENT DESIGN BRIEF NEW DEVELOPMENT DRAINAGE SYSTEM

REV 0 – February 24, 2023

PREPARED BY:

HALLEX PROJECT #220914

HALLEX NIAGARA 4999 VICTORIA AVENUE NIAGARA FALLS, ON L2E 4C9 HALLEX HAMILTON 745 SOUTH SERVICE ROAD, UNIT 205 STONEY CREEK, ON L8E 5Z2

TABLE OF CONTENTS

1. PRE-DEVELOPMENT CONDITIONS1	
1.1LOCATION	
2. PROPOSED WORK 1	
2.1 GRADING	
3. DESIGN CONSIDERATIONS	
3.1 PRE-DEVELOPMENT SITE DRAINAGE1	
3.1.1 Peak Runoff	
3.2 POST-DEVELOPMENT SITE DRAINAGE2	
3.2.1Peak Runoff.23.2.2Quantity33.2.3Quality.43.2.4Maintenance Recommendations4	
4. CONCLUSION 5	,
PRE-DEVELOPMENT CATCHMENT AREA PLAN	
POST-DEVELOPMENT CATCHMENT AREA PLAN	
EXHIBITS – Storm Water Management Design	

APPENDIX 'A' – HydroDome HD4 Sizing Calculations & Schematic

1. PRE-DEVELOPMENT CONDITIONS

1.1 LOCATION

The proposed 13-unit Dominion Road townhouse development is located at 3303 Dominion Road, which is west of the Dominion Road and Charleston Drive intersection in the Town of Fort Erie, ON.

1.2 DRAINAGE PATTERN

The current drainage path for the site consists of overland sheet flow to the existing roadside drainage ditch at Dominion Road. The proposed stormwater management controls will ensure the storm flows are controlled to the pre-development flow rate to the existing roadside drainage ditch at Dominion Road.

2. PROPOSED WORK

2.1 GRADING

The objective of the design is to utilize the existing natural slope and achieve the minimum and maximum slopes in the grading of the asphalt surfaces. This will ensure the surface not only drains as per the design but is not too steep. The grading of the site also ensures that the storm water flow will mostly drain through the onsite drainage system for storm water quantity and quality controls. The proposed drainage system onsite has been designed according to the two, five and one-hundred-year storm events as per the Town of Fort Erie intensity-duration-frequency curve.

2.2 DRAINAGE

The proposed design requires 133.9 metres of storm sewer piping, five precast catch basin maintenance holes, a HydroDome HD4 oil and grit separator and a cast-in place underground storage tank.

3. DESIGN CONSIDERATIONS

3.1 PRE-DEVELOPMENT SITE DRAINAGE

3.1.1 Peak Runoff

The total drainage area for the development is 0.409 hectares with an existing runoff coefficient of 0.27 based on the existing roof and grass surfaces.

The time of concentration is determined to be 10 minutes to the start of the existing drainage system as required by the Town of Fort Erie municipal standards.

Using the Rational Method, the peak flow rates are $Q = \frac{CiA}{360}$

Subcatchment	Description	Draining to	Area, ha	Tc, min
Area.1	Sheet	Dominion Road	0.409	10
2-year Storm	A,ha	С	i,mm/h	Q, L/s
Area.1	0.409	0.27	67	20.2
5-year Storm	A,ha	С	i,mm/h	Q, L/s
Area.1	0.409	0.27	86	25.8
100-year Storm	A,ha	С	i,mm/h	Q, L/s
Area.1	0.409	0.27	137	41.4

Therefore, the total pre-development / allowable flow for the subject site is 20.2L/s for the two-year storm, 25.8L/s for the five-year storm and 41.4L/s for the one-hundred-year storm.

3.1.2 Quantity

There is no known storm quantity control measure in place for the pre-development condition.

3.1.3 Quality

There is no known storm quality control measure in place for the pre-development condition.

3.2 POST-DEVELOPMENT SITE DRAINAGE

3.2.1 Peak Runoff

The proposed 13-unit Dominion Road townhouse development consists of the demolition of the existing buildings and the construction of two new townhouse blocks, an asphalt laneway & parking areas and grass areas. The resulting runoff coefficient in the post-development condition of the site is 0.73.

The proposed development will mostly drain through the proposed onsite storm drainage system and shall discharge to the existing roadside drainage ditch at Dominion Road as per the existing site condition. Part of the site will continue to drain directly to Dominion Road via sheet flow similar to the pre-development condition.

The site's storm sewer pipes are designed according to the 5-year minor storm. Utilizing the minimum recommended time of concentration of 10 minutes, the time for storm water to flow from the farthest

drainage area to the roadside drainage ditch at Dominion Road, as outlined in Exhibit #2, is calculated to be 12.14 minutes.

Subcatchment	Description	Draining to	Area, ha	Tc, min
Area.1	Sheet	Dominion Road	0.018	10
Prop. Sewer	Sewer	Dominion Road	0.391	10
2-year Storm	A,ha	С	i,mm/h	Q, L/s
Area.1	0.018	0.25	67	0.8
Prop. Sewer	0.391	0.75	67	52.3
TOTAL	0.409	0.73	67	53.1
5-year Storm	A,ha	С	i,mm/h	Q, L/s
Area.1	0.018	0.25	86	1.1
Prop. Sewer	0.391	0.75	86	67.0
TOTAL	0.409	0.73	86	68.1
100-year Storm	A,ha	С	i,mm/h	Q, L/s
Area.1	0.018	0.25	137	1.7
Prop. Sewer	0.391	0.75	137	107.5
TOTAL	0.409	0.73	137	109.2

Using the Rational Method, the peak flow rates are as follows:

Therefore, the total post-development flow for the subject site is 53.1L/s for the two-year storm, 68.1L/s for the five-year storm and 109.2L/s for the one-hundred-year storm. The flows and other design information are contained in Exhibit #1 for the two-year storm, Exhibit #2 for the five-year storm and Exhibit #3 for the one-hundred-year storm at the end of the design brief.

3.2.2 Quantity

The post-development storm water runoff to the existing roadside drainage ditch at Dominion Road is higher than the pre-development runoff. As such, storm water detention is required to ensure that the existing drainage ditch does not surcharge as a result of the proposed development.

Stormwater quantity controls for the site will be achieved by utilizing a 110mm diameter orifice plate at the outlet side of the cast-in place underground storage tank. The orifice plate will ensure the post-development runoff is controlled to the pre-development runoff rate for the two, five and one-hundred-year storm events. The resulting 44.0m³ volume generated from the two-year storm, 53.0m³ volume generated from the five-year storm and 89.0m³ volume generated from the one-hundred-year storm will be contained within the proposed minimum 22.0m long x 1.8m wide x 1.21m high cast-in-place stormwater management tank, the proposed sewer system and temporary surface ponding. The storage within the pipes consist of only the static portion of

the pipe as the dynamic portion is required to remain in a state of flow as per the design. In addition, storage is provided within each node consisting of the catchbasin manholes.

The following table summarizes the pre-development / allowable flow rates, the post-development uncontrolled flow rates and the post-development controlled flow rates for the subject site:

	Pre- Development /	Post- Development	Post- Development
	Allowable Flow Rate	Uncontrolled Flow Rate	Controlled Flow Rate
	(L/s)	(L/s)	(L/s)
2-year Storm			
Area.1	20.2	0.8	0.8
Prop. Sewer		52.3	19.3
TOTAL	20.2	53.1	20.1
5-year Storm			
Area.1	25.8	1.1	1.1
Prop. Sewer		67.0	22.2
TOTAL	25.8	68.1	23.3
100-year Storm			
Area.1	41.4	1.7	1.7
Prop. Sewer		107.5	29.7
TOTAL	41.4	109.2	31.4

The orifice plate sizing and subsequent storage volume for the detained flow are indicated in Exhibit #4 for the two-year storm, Exhibit #5 for the five-year storm and Exhibit #6 for the one-hundred-year storm at the end of the design brief.

3.2.3 Quality

The storm water collected in the proposed development passes through a HydroDome HD4, which achieves a total suspended solids removal of at least 85%. This value is greater than the required 'Enhanced' treatment of 80% as indicated in the MOE Stormwater Management Planning and Design Manual, dated March 2003 (refer to Chapter 3: Environmental Design Criteria, Section 3.3.1.1. Level of Protection). The design calculations from the manufacturer as well as the drawings for the unit are included in Appendix 'A' of this report.

3.2.4 Maintenance Recommendations

The storm sewer system includes pipes, catchbasins, maintenance holes, swales, the oil/grit separator and underground storage tank. It is important to regularly inspect the elements to ensure that storm water is flowing as originally designed. Debris and sediment commonly clog the system and reduce the overall effectiveness.

HALLEX ENGINEERING LTD.

Hallex Project #220914 February 24, 2023 Rev #0

The following maintenance and inspection tasks should be done:

- 1. Inspect the culverts, inlet pipes and outlet pipes for structural integrity. (Annually) Check culverts and inlet/ outlet pipes for structural integrity to ensure they aren't crumbling or broken.
- 2. Conduct routine inspections for trash or other debris that may be blocking the culverts, swales and inlet and outlet pipes. (Monthly and after rain events) Remove all trash and debris.
- 3. Conduct routine inspections for erosion of the swales. (Annually and after rain events). Any erosion shall be corrected by sodding the area. There may be a need to provide further erosion control (ie rip-rap) to prevent the re-occurrence of erosion.
- 4. Conduct routine maintenance of swales including grass cutting.
- 5. Inspect and clean the storm sewer system (Every 5 years or as needed). Catchbasins to be inspected annually and debris removed when the debris reaches a depth of ½ from the bottom of the sump to the bottom of the pipe.
- 6. Inspect for sediment accumulation at pipes (Semi-annually and after rain events). It is important to clean out sediment that might be restricting water flow.
- 7. Do not dump any materials in the storm sewer system.
- 8. Inspect the HydroDome Oil/Grit Separator (Annually). Procedures for inspection are provided in the HydroDome Owner's Manual. A vacuum truck is to be used for maintenance of the HydroDome.

4. CONCLUSION

The aforementioned calculations and recommendations for the storm drainage system are based on the current design for the site as of writing this report.

We trust this report meets your approval. Please contact the undersigned should you have any questions or comments.

Yours truly, HALLEX ENGINEERING LTD

Jim Halucha P.Eng Civil/Structural Engineer

Jonathan Skinner, C.E.T., B.Tech Civil Technologist

HALLEX ENGINEERING LTD.

	AREA.1 0.27 0.409	DOMINION ROAD		
			LEGEND C,A AI AI AVERAGE COEFFICIE	ATCHMENT REA REA HECTARES) RUNOFF ENT
	PROJECT: Dominion Road Townhouses	DATE: 02/24	JOB No.: 22	0914
	3303 DOMINION ROAD, FORT ERIE, ON	SCALE: 1:400	DWG.	REV.
	SHEET TITLE: PRE-DEVELOPMENT CATCHMENT AREA PLAN	DR. BY: JS	CSK1	O
4999 Victoria Avenue, 745 South Service Rd. Unit 205, Niagara Falls, ON L2E 4C9 Stoney Creek, ON L8E 522 Tel: 905-357-4015 Fax: 905-353-1105 Tel: 905-551-41106 Fax: 905-551-4110		CH. BY: JH		-

Dominion Road Townhouses Exhibit #1 - 2 Year Post - Development Calculations

Rainfall Intensity Values = A= 628.050 B= 6.652 C= 0.796 <u>manning's n =</u> 0.013 PVC Pipe 0.013 Conc Pipe 0.024 Corr. Stl Pipe 0.035 Grass Swale

	Location		Longth	Are	а	Flow	/ Time	Deinfell	Linit rate	Design F	lows	Flow	Se	wer/Chan	nel Desig	ın	Invert El	evations
				Incre-	Cum	То	In	Intonsity	of Pupoff		Cum	Control	Slope	Capacity	Velocity	*Dia/	Up-	Down-
Pipe	From Node	To Node	or ripe	ment	Total	Upper	Section	Intensity	of Runon	Culli Flow	Flow	Control	Slope	Full	Full	Depth	stream	stream
			(m)	(ha)	(ha)	(min)	(min)	mm/hr	m ³ /ha*day	(m ³ /d)	(m ³ /s)	(m ³ /s)	(m/m)	(m ³ /s)	(m/s)	(m)	(m)	(m)
1	Area 1	Ditch	N/A	0.018	0.018	10.00	N/A	67	4017	72.3	0.0008	0.0008	N/A	N/A	N/A	N/A	N/A	N/A
Grass	-	-	-	0.018	-	-	-	-	4016.6	72.3	-	-	-	-	-	-	-	-
2	CBMH. 1	CBMH. 2	12	0.062	0.062	10.00	0.24	67	19280	687.6	0.0080	0.0080	0.0030	0.0960	0.8695	0.375	181.53	181.49
Roof	-	-	-	0.039	-	-	-	-	15263.1	595.3	-	-	-	-	-	-	-	-
Grass	-	-	-	0.023	-	-	-	-	4016.6	92.4	-	-	-	-	-	-	-	-
3	CBMH. 2	CBMH. 4	30.8	0.028	0.090	10.24	0.65	66	18267	995.0	0.0115	0.0115	0.0020	0.1275	0.8017	0.450	181.49	181.42
Paved	-	-	-	0.019	-	-	-	-	14296.0	271.6	-	-	-	-	-	-	-	-
Grass	-	-	-	0.009	-	-	-	-	3971.1	35.7	-	-	-	-	-	-	-	-
4	CBMH. 3	CBMH. 4	24.8	0.080	0.080	10.00	0.52	67	19280	816.2	0.0094	0.0094	0.0020	0.1275	0.8017	0.450	181.47	181.42
Roof	-	-	-	0.044	-	-	-	-	15263.1	671.6	-	-	-	-	-	-	-	-
Grass	-	-	-	0.036	-	-	-	-	4016.6	144.6	-	-	-	-	-	-	-	-
5	CBMH. 4	CBMH. 5	59.2	0.109	0.279	10.89	1.12	64	32370	3136.0	0.0363	0.0363	0.0020	0.1923	0.8885	0.525	181.42	181.30
Roof	-	-	-	0.030	-	-	-	-	14643.4	439.3	-	-	-	-	-	-	-	-
Paved	-	-	-	0.058	-	-	-	-	13872.7	804.6	-	-	-	-	-	-	-	-
Grass	-	-	-	0.021	-	-	-	-	3853.5	80.9	-	-	-	-	-	-	-	-
6	CBMH. 5	Tank.	1.9	0.112	0.391	12.01	0.03	61	30814	4515.3	0.0523	0.0523	0.0050	0.3041	1.4048	0.525	181.30	181.29
Roof	-	-	-	0.046	-	-	-	-	13939.5	641.2	-	-	-	-	-	-	-	-
Paved	-	-	-	0.052	-	-	-	-	13205.8	686.7	-	-	-	-	-	-	-	-
Grass	-	-	-	0.014	-	-	-	-	3668.3	51.4	-	-	-	-	-	-	-	-
7	Tank.	OGS	1.4	0.000	0.391	12.04	0.03	61	0	4515.3	0.0523	0.0193	0.0050	0.0684	0.9673	0.300	181.29	181.28
8	OGS	Ditch	3.8	0.000	0.391	12.07	0.07	61	0	4515.3	0.0523	0.0193	0.0050	0.0684	0.9673	0.300	181.25	181.23

Run-off Coefficients Used:

Velocity Range:

Time of Concentration:

Roof Structure Paved Surface Grass Surface

0.95 0.90 0.25

C =

C =

C =

Minimum Velocity = 0.80 m/s Maximum Velocity = 6.00 m/s Time of Concentration =

10 min

Dominion Road Townhouses Exhibit #2 - 5 Year Post - Development Calculations

<u>Rainfall Intensity Values =</u>

A= 747.930 B= 6.800

C= 0.768

<u>manning's n =</u> 0.013 PVC Pipe 0.013 Conc Pipe 0.024 Corr. Stl Pipe 0.035 Grass Swale

	Location		Longth	Are	а	Flow	/ Time	Doinfall	Linit rate	Design F	lows	Flow	Se	ewer/Chan	nel Desig	jn	Invert El	evations
				Incre-	Cum	То	In	Intoncity	of Pupoff		Cum	Control	Slope	Capacity	Velocity	*Dia/	Up-	Down-
Pipe	From Node	To Node	or ripe	ment	Total	Upper	Section	Intensity		Culli Flow	Flow	Control	Slope	Full	Full	Depth	stream	stream
			(m)	(ha)	(ha)	(min)	(min)	mm/hr	m ³ /ha*day	(m ³ /d)	(m ³ /s)	(m ³ /s)	(m/m)	(m ³ /s)	(m/s)	(m)	(m)	(m)
1	Area 1	Ditch	N/A	0.018	0.018	10.00	N/A	86	5140	92.5	0.0011	0.0011	N/A	N/A	N/A	N/A	N/A	N/A
Grass	-	-	-	0.018	-	-	-	-	5140.1	92.5	-	-	-	-	-	-	-	-
2	CBMH. 1	CBMH. 2	12	0.062	0.062	10.00	0.24	86	24673	880.0	0.0102	0.0102	0.0030	0.0960	0.8695	0.375	181.53	181.49
Roof	-	-	-	0.039	-	-	-	-	19532.5	761.8	-	-	-	-	-	-	-	-
Grass	-	-	-	0.023	-	-	-	-	5140.1	118.2	-	-	-	-	-	-	-	-
3	CBMH. 2	CBMH. 4	30.8	0.028	0.090	10.24	0.65	85	23388	1273.5	0.0147	0.0147	0.0020	0.1275	0.8017	0.450	181.49	181.42
Paved	-	-	-	0.019	-	-	-	-	18304.0	347.8	-	-	-	-	-	-	-	-
Grass	-	-	-	0.009	-	-	-	-	5084.4	45.8	-	-	-	-	-	-	-	-
4	CBMH. 3	CBMH. 4	24.8	0.080	0.080	10.00	0.52	86	24673	1044.5	0.0121	0.0121	0.0020	0.1275	0.8017	0.450	181.47	181.42
Roof	-	-	-	0.044	-	-	-	-	19532.5	859.4	-	-	-	-	-	-	-	-
Grass	-	-	-	0.036	-	-	-	-	5140.1	185.0	-	-	-	-	-	-	-	-
5	CBMH. 4	CBMH. 5	59.2	0.109	0.279	10.89	1.12	82	41499	4016.5	0.0465	0.0465	0.0020	0.1923	0.8885	0.525	181.42	181.30
Roof	-	-	-	0.030	-	-	-	-	18773.3	563.2	-	-	-	-	-	-	-	-
Paved	-	-	-	0.058	-	-	-	-	17785.2	1031.5	-	-	-	-	-	-	-	-
Grass	-	-	-	0.021	-	-	-	-	4940.3	103.7	-	-	-	-	-	-	-	-
6	CBMH. 5	Tank.	1.9	0.112	0.391	12.01	0.03	79	39588	5788.5	0.0670	0.0670	0.0050	0.3041	1.4048	0.525	181.30	181.29
Roof	-	-	-	0.046	-	-	-	-	17908.7	823.8	-	-	-	-	-	-	-	-
Paved	-	-	-	0.052	-	-	-	-	16966.2	882.2	-	-	-	-	-	-	-	-
Grass	-	-	-	0.014	-	-	-	-	4712.8	66.0	-	-	-	-	-	-	-	-
7	Tank.	OGS	1.4	0.000	0.391	12.04	0.03	78	0	5788.5	0.0670	0.0222	0.0050	0.0684	0.9673	0.300	181.29	181.28
8	OGS	Ditch	3.8	0.000	0.391	12.07	0.07	78	0	5788.5	0.0670	0.0222	0.0050	0.0684	0.9673	0.300	181.25	181.23

Run-off Coefficients Used:

Velocity Range:

Range:

Time of Concentration:

Roof Structure Paved Surface Grass Surface 0.95 M 0.90 M 0.25

C =

C =

C =

Minimum Velocity =0.80 m/sMaximum Velocity =6.00 m/s

Time of Concentration =

10 min

Dominion Road Townhouses Exhibit #3 - 100 Year Post - Development Calculations

Rainfall Intensity Values = A= 1083.550 B= C=

6.618

0.735

manning's n = 0.013 PVC Pipe 0.013 Conc Pipe 0.024 Corr. Stl Pipe 0.035 Grass Swale

	Location		Longth	Are	а	Flow	/ Time	Painfall	Linit rate	Design F	lows	Flow	Se	wer/Chan	nel Desig	In	Invert El	evations
				Incre-	Cum	То	In	Intonsity	of Pupoff		Cum	Control	Slope	Capacity	Velocity	*Dia/	Up-	Down-
Pipe	From Node	To Node		ment	Total	Upper	Section	mensity			Flow	Control	Slope	Full	Full	Depth	stream	stream
			(m)	(ha)	(ha)	(min)	(min)	mm/hr	m ³ /ha*day	(m ³ /d)	(m ³ /s)	(m ³ /s)	(m/m)	(m ³ /s)	(m/s)	(m)	(m)	(m)
1	Area 1	Ditch	N/A	0.018	0.018	10.00	N/A	137	8239	148.3	0.0017	0.0017	N/A	N/A	N/A	N/A	N/A	N/A
Grass	-	-	-	0.018	-	-	-	-	8239.0	148.3	-	-	-	-	-	-	-	-
2	CBMH. 1	CBMH. 2	12	0.062	0.062	10.00	0.24	137	39547	1410.5	0.0163	0.0163	0.0030	0.0960	0.8695	0.375	181.53	181.49
Roof	-	-	-	0.039	-	-	-	-	31308.2	1221.0	-	-	-	-	-	-	-	-
Grass	-	-	-	0.023	-	-	-	-	8239.0	189.5	-	-	-	-	-	-	-	-
3	CBMH. 2	CBMH. 4	30.8	0.028	0.090	10.24	0.65	136	37502	2041.5	0.0236	0.0236	0.0020	0.1275	0.8017	0.450	181.49	181.42
Paved	-	-	-	0.019	-	-	-	-	29349.5	557.6	-	-	-	-	-	-	-	-
Grass	-	-	-	0.009	-	-	-	-	8152.6	73.4	-	-	-	-	-	-	-	-
4	CBMH. 3	CBMH. 4	24.8	0.080	0.080	10.00	0.52	137	39547	1674.2	0.0194	0.0194	0.0020	0.1275	0.8017	0.450	181.47	181.42
Roof	-	-	-	0.044	-	-	-	-	31308.2	1377.6	-	-	-	-	-	-	-	-
Grass	-	-	-	0.036	-	-	-	-	8239.0	296.6	-	-	-	-	-	-	-	-
5	CBMH. 4	CBMH. 5	59.2	0.109	0.279	10.89	1.12	132	66604	6441.7	0.0746	0.0746	0.0020	0.1923	0.8885	0.525	181.42	181.30
Roof	-	-	-	0.030	-	-	-	-	30130.4	903.9	-	-	-	-	-	-	-	-
Paved	-	-	-	0.058	-	-	-	-	28544.6	1655.6	-	-	-	-	-	-	-	-
Grass	-	-	-	0.021	-	-	-	-	7929.1	166.5	-	-	-	-	-	-	-	-
6	CBMH. 5	Tank.	1.9	0.112	0.391	12.01	0.03	126	63637	9290.2	0.1075	0.1075	0.0050	0.3041	1.4048	0.525	181.30	181.29
Roof	-	-	-	0.046	-	-	-	-	28788.0	1324.2	-	-	-	-	-	-	-	-
Paved	-	-	-	0.052	-	-	-	-	27272.9	1418.2	-	-	-	-	-	-	-	-
Grass	-	-	-	0.014	-	-	-	-	7575.8	106.1	-	-	-	-	-	-	-	-
7	Tank.	OGS	1.4	0.000	0.391	12.04	0.03	126	0	9290.2	0.1075	0.0297	0.0050	0.0684	0.9673	0.300	181.29	181.28
8	OGS	Ditch	3.8	0.000	0.391	12.07	0.07	126	0	9290.2	0.1075	0.0297	0.0050	0.0684	0.9673	0.300	181.25	181.23

Run-off Coefficients Used:

Velocity Range:

Time of Concentration:

Roof Structure Paved Surface Grass Surface

Minimum Velocity = 0.95 0.90 0.25

C =

C =

C =

0.80 m/s Maximum Velocity = 6.00 m/s

Time of Concentration =

10 min

Dominion Road Townhouses Exhibit #4 - 2 Year Orifice Plate and Storage Volume Calcs

Site Data

		Adj. Flow	Total
Oite Dischause	Flow	(w/o Surface	Storm
Site Discharge		Runoff)	Volume
	(m ³ /s)	(m ³ /s)	(m ³)
Pre - Develop.	0.0202	0.0193	$>\!$
Post - Develop.	0.0531	0.0523	44.0

Control Node Data

Outlet Pipe	Storm Control Node	Outlet Pipe Size	Outlet Invert Elev.	Elev. @ Orifice	
		(m)	(m)	(m)	
7	Tank.	0.300	181.29	181.35	

* Volume calculated using SWMM 5.1 modelling software in accordance with the flow rate for actual size of the orifice.

Head Height

0.54 m

Storm Retention Elev. Check 181.89 m

Precast/Cast-in-Place Concrete Tank Storage

Model #	Length	Width	Height	Storage Volume
	(m)	(m)	(m)	(m ³)
CIP	22.00	1.80	0.60	23.8
Total	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	$>\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!\!$	\geq	23.8

Pipe Storage

Pipes	From Node	To Node	Pipe Length	Design Flow	Storage Pipe Size	Pipe Capacity	Dynamic	Static	Static Volume	Volume Part. Full	Inv. EI @ Upper	Inv. EI @ Lower
			(m)	(m ³ /s)	(m)	(m ³ /s)	(Pipe %)	(Pipe %)	(m ³)	(m ³)	(m)	(m)
2	CBMH. 1	CBMH. 2	12.0	0.0080	0.375	0.0960	8.29%	91.71%	1.21	1.16	181.53	181.49
3	CBMH. 2	CBMH. 4	30.8	0.0115	0.450	0.1275	9.03%	90.97%	4.45	3.91	181.49	181.42
4	CBMH. 3	CBMH. 4	24.8	0.0094	0.450	0.1275	7.41%	92.59%	3.65	3.38	181.47	181.42
5	CBMH. 4	CBMH. 5	59.2	0.0363	0.525	0.1923	18.87%	81.13%	10.39	9.05	181.42	181.30
6	CBMH. 5	Tank.	1.9	0.0523	0.525	0.3041	17.19%	82.81%	0.34	0.34	181.30	181.29
	Total		128.7	\succ	\geq	\succ	\geq	\succ	20.04	17.84	\geq	\geq

Node Storage

0.41-4		Lid	Utility Dim	ensions	Storage
Dine	Node	Elevation	Size	Area	Volume
Pipe		(m)	(m)	(m ²)	(m ³)
2	CBMH. 1	182.45	1.200	1.13	0.40
3	CBMH. 2	182.50	1.200	1.13	0.45
4	CBMH. 3	182.50	1.200	1.13	0.47
5	CBMH. 4	182.50	1.200	1.13	0.53
6	CBMH. 5	182.50	1.200	1.13	0.66
	Total	\succ	$>\!$	\succ	2.51

Total Storage =

Required Storage Achieved

$\label{eq:original_optimal_o$

<u>44.1 m³</u>

Coefficient of Discharge	Cd =	0.62 (sharp)	0.62 Sharp Orifice coefficient of discharge
Allowable Flow Rate	Q =	0.0193 m ³ /s	0.80 Tube coefficient of discharge
Force of Gravity	g =	9.81 m/s/s	_
Head Height	h =	0.54 m	
Dia of Max. Orifice	dia =	110.26 mm	Use - 110 mm
Flow Rate for Actual Size of H	ole (Q=Cd*A*	sqrt(2*g*h))	
Area of Orifice	A =	0.0095 m ²	
Flow Rate through Orifice	Q =	0.0193 m ³ /s	

Dominion Road Townhouses Exhibit #5 - 5 Year Orifice Plate and Storage Volume Calcs

Site Data

		Adj. Flow	Total
Oite Discharge	Flow	(w/o Surface	Storm
Site Discharge		Runoff)	Volume
	(m ³ /s)	(m ³ /s)	(m ³)
Pre - Develop.	0.0258	0.0248	$>\!$
Post - Develop.	0.0681	0.0670	53.0

Control Node Data

Outlet Pipe	Storm Control	Outlet Pipe Size	Outlet Invert Elev.	Elev. @ Orifice	
	Noue	(m)	(m)	(m)	
7	Tank.	0.300	181.29	181.35	

* Volume calculated using SWMM 5.1 modelling software in accordance with the flow rate for actual size of the orifice.

Head Height

0.72 m

Storm Retention Elev. Check 182.07 m

Precast/Cast-in-Place Concrete Tank Storage

Model #	Length (m)	(m)	Height (m)	Volume (m ³)	
CIP	22.00	1.80	0.78	30.9	
Total	\geq	\sim	\sim	30.9	

Pipe Storage

Pipes	From Node	To Node	Pipe Length	Design Flow	Storage Pipe Size	Pipe Capacity	Dynamic	Static	Static Volume	Volume Part. Full	Inv. El @ Upper	Inv. EI @ Lower
			(m)	(m ³ /s)	(m)	(m ³ /s)	(Pipe %)	(Pipe %)	(m ³)	(m ³)	(m)	(m)
2	CBMH. 1	CBMH. 2	12.0	0.0102	0.375	0.0960	10.61%	89.39%	1.18	1.18	181.53	181.49
3	CBMH. 2	CBMH. 4	30.8	0.0147	0.450	0.1275	11.56%	88.44%	4.33	4.33	181.49	181.42
4	CBMH. 3	CBMH. 4	24.8	0.0121	0.450	0.1275	9.48%	90.52%	3.57	3.57	181.47	181.42
5	CBMH. 4	CBMH. 5	59.2	0.0465	0.525	0.1923	24.17%	75.83%	9.71	9.71	181.42	181.30
6	CBMH. 5	Tank.	1.9	0.0670	0.525	0.3041	22.03%	77.97%	0.32	0.32	181.30	181.29
	Total		128.7	\succ	\geq	\succ	\geq	$\geq <$	19.11	19.11	\succ	\geq

Node Storage

0.4104		Lid	Utility Dim	Storage	
Dine	Node	Elevation	Size	Area	Volume
Pipe		(m)	(m)	(m ²)	(m ³)
2	CBMH. 1	182.45	1.200	1.13	0.61
3	CBMH. 2	182.50	1.200	1.13	0.65
4	CBMH. 3	182.50	1.200	1.13	0.67
5	CBMH. 4	182.50	1.200	1.13	0.73
6	CBMH. 5	182.50	1.200	1.13	0.87
	Total	\succ	$>\!$	\succ	3.53

Total Storage =

Required Storage Achieved

$\label{eq:original_optimal_o$

<u>53.5 m³</u>

Coefficient of Discharge	Cd =	0.62 (sharp)	0.62 Sharp Orifice coefficient of discharge
Allowable Flow Rate	Q =	0.0248 m ³ /s	0.80 Tube coefficient of discharge
Force of Gravity	g =	9.81 m/s/s	
Head Height	h =	0.72 m	
Dia of Max. Orifice	dia =	116.14 mm	Use - 110 mm
Flow Rate for Actual Size of H	l ole (Q=Cd*A*	sqrt(2*g*h))	
Area of Orifice	A =	0.0095 m ²	
Flow Rate through Orifice	Q =	0.0222 m ³ /s	

Dominion Road Townhouses Exhibit #6 - 100 Year Orifice Plate and Storage Volume Calcs

Site Data

		Adj. Flow	Total
Oite Discharge	Flow	(w/o Surface	Storm
Site Discharge		Runoff)	Volume
	(m ³ /s)	(m ³ /s)	(m ³)
Pre - Develop.	0.0414	0.0397	$>\!$
Post - Develop.	0.1092	0.1075	89.0

Control Node Data									
Outlet Pipe	Storm Control	Outlet Pipe Size	Outlet Invert Elev.	Elev. @ Orifice					
	Nouc	(m)	(m)	(m)					
7	Tank.	0.300	181.29	181.35					

* Volume calculated using SWMM 5.1 modelling software in accordance with the flow rate for actual size of the orifice.

Head Height

Storm Retention Elev. Check <u>182.64 m</u>

Cast-in-Place Concrete Tank Storage

Model #	Length	Width	Height	Storage Volume	
	(m)	(m)	(m)	(m ³)	
CIP	22.00	1.80	1.21	47.9	
Total	>	$>\!\!\!\!>$	\succ	47.9	

1.29 m

Pipe Storage

Pines	From Node	To Node	Pipe Length	Design Flow	Storage Pipe Size	Pipe	Dynamic	Static	Static Volume	Volume Part Full	Inv. El @	Inv. El @
			(m)	(m ³ /s)	(m)	(m ³ /s)	(Pipe %)	(Pipe %)	(m ³)	(m ³)	(m)	(m)
2	CBMH 1	CBMH 2	12.0	0.0163	0.375	0.0960	17.00%	83.00%	11	11	181.53	181 49
3	CBMH 2	CBMH 4	30.8	0.0236	0.070	0.0000	18.53%	81 47%	3.99	3.99	181.49	181 42
4	CBMH. 3	CBMH. 4	24.8	0.0194	0.450	0.1275	15.20%	84.80%	3.34	3.34	181.47	181.42
5	CBMH. 4	СВМН. 5	59.2	0.0746	0.525	0.1923	38.77%	61.23%	7.84	7.84	181.42	181.30
6	CBMH. 5	Tank.	1.9	0.1075	0.525	0.3041	35.36%	64.64%	0.26	0.26	181.30	181.29
	Total		128.7	\geq	\geq	$\overline{}$	\leq	\geq	16.53	16.53	\ge	Χ

Node Storage

0.41-4		Lid	Utility Dim	ensions	Storage
Dine	Node	Elevation	Size	Area	Volume
Pipe		(m)	(m)	(m ²)	(m ³)
2	CBMH. 1	182.45	1.200	1.13	1.04
3	CBMH. 2	182.50	1.200	1.13	1.14
4	CBMH. 3	182.50	1.200	1.13	1.16
5	CBMH. 4	182.50	1.200	1.13	1.22
6	CBMH. 5	182.50	1.200	1.13	1.35
	Total	\searrow	\searrow	\searrow	5.91

Surface Water Storage

0		Lid	Surface F	onding	Storage
Dine	Node	Elevation	Area	Elevation	Volume
Pipe		(m)	(m ²)	(m)	(m ³)
2	CBMH. 1	182.45	21.60	182.64	2.05
3	CBMH. 2	182.50	48.70	182.64	3.41
4	CBMH. 3	182.50	11.10	182.64	0.78
5	CBMH. 4	182.50	130.10	182.64	9.11
6	CBMH. 5	182.50	82.50	182.64	5.77
	Total	\geq	$>\!$	\succ	21.12

Total Storage = <u>91.5</u> m³ **Required Storage Achieved** +(^*~*~

Orifice Diameter Calculation (A=Q/(Cd*sqrt(2	2*g*h)))	
Coefficient of Discharge	Cd =	0.62 (sharp)	0.62
Allowable Flow Rate	Q =	0.0397 m ³ /s	0.80
Force of Gravity	g =	9.81 m/s/s	
Head Height	h =	1.29 m	
Dia of Max. Orifice	dia =	127.19 mm	Use -
Flow Rate for Actual Size of H	ole (Q=Cd*A*s	sqrt(2*g*h))	
Area of Orifice	A =	0.0095 m^2	
Flow Rate through Orifice	Q =	0.0297 m ³ /s	

Sharp Orifice coefficient of discharge Tube coefficient of discharge

110 mm

APPENDIX 'A'

HydroDome HD4

Sizing Calculations and Schematic

HALLEX ENGINEERING LTD.

Hydroworks Sizing Summary

Dominion Road Townhouse Development 3303 Dominion Road, Fort Erie

02-24-2023

Recommended Size: HydroDome HD 4

A HydroDome HD 4 is recommended to provide 80.0 % annual TSS removal based on a drainage area of 0.391 (ha) with an imperviousness of 74.9 % and St. Catherines A, Ontario rainfall for the Hydroworks standard particle size distribution.

The recommended HydroDome HD 4 treats 100 % of the annual runo**ff** and provides 85 % annual TSS removal for the St. Catherines A rainfall records and Hydroworks standard par**ti**cle size distribu**ti**on.

The HydroDome has a siphon which creates a discontinuity in headloss. Since a peak flow was not specified, headloss was calculated using the full pipe flow of .07 (m3/s) for the given 300 (mm) pipe diameter at .5% slope. The headloss was calculated to be 279 (mm) above the crown of the 300 (mm) outlet pipe.

This summary report provides the main parameters that were used for sizing. These parameters are shown on the summary tables and graphs provided in this report.

If you have any ques**ti**ons regarding this sizing summary please do not hesitate to contact Hydroworks at 888-290-7900 or email us at support@hydroworks.com.

The sizing program is for sizing purposes only and does not address any site specific parameters such as hydraulic gradeline, tailwater submergence, groundwater, soils bearing capacity, etc. Headloss calculations are not a hydraulic gradeline calculation since this requires a starting water level and an analysis of the entire system downstream of the HydroDome.

TSS Removal Sizing Summary

ite Paramete Area (ha) Imperviousn	rs [ess (%) [0.391	Units U.S. Vetric	Rainfall Station - St. Catherines A 1971 To 2005	Pass Custom CAD	Video Oi Rainfall	ntario Timestep = 60 min.
ines)	ominion Road T 303 Dominion R	ownhouse Dev oad, Fort Erie	velopment		Outlet Pipe Diam. (mm) 30	0 Slop	e (%) 5
ab Sizing Re	sults	Г	Post Treatment Re	charge	Peak Design Flow	(m3/s)	
droDome An	nual Sizing Re	sults			Particle Size [Distribution	1
Model #	Qlow (m3/s)	Qtot (m3/s)	Flow Capture (%)	TSS Removal (%)	Size (um)	%	SG
lloavailable	890	830	100 %	79.%	20	35	2.65
HD 4	000	830	100 %	85 %	35	10	2.65
HD 5	068	830	100 %	91 %	63	5	2.65
HD 6	068	068	100 %	94 %	88	10	2.65
Unavailable	068	068	100 %	96 %	125	15	2.65
HD 8	068	068	100 %	97 %	200	15	2.65
HD 10	.068	.068	100 %	99 %	325	5	2.65
	000	000	100 %	90 %	/50	5	2.65

TSS Particle Size Distribution

00			1.00 000					
55	Size (um)	noution %	SG	Notes:	TSS Distributions			
20 35 2.65 1.1	1. To change data	Standard Design						
	35	10	2.65	just click a cell and type in the new	C ETV Canada			
	63	5	2.65	value(s)	C 0K110			
	88	10	2.65	2. To add a row just go to the bottom of C Toronto				
	125	15	2.65	the table and start	C Toronto			
	200	15	2.65	typing. 2. To delete a row	Ontario Fine			
	325	5	2.65	select the row by	C Calgary Forebay			
750	750	5	2.65	clicking on the first pointer column,	C Kitchener			
				then press delete	C User Defined			
				 To sort the table click on one of the column headings 				
					Clear			

Site Physical Characteristics

) 🖄									<i>a</i>
neral I	Dimensions	Rainfall	Site T	SS PSD	TSS Loadin	g Quantit	y Storage	By-Pass	Custom (CAD Vid	eo Other
Catchm	ent Parame	ters							Maintenand	ce	
Widt	<mark>n (</mark> m)	67	In	nperv. Man	nings n		.015		Frequency	(months)	12
ſ	Default Widt	h	P	erv Mannir	ıgs n		.25				
Imp. Depress. Stor			s. Storage	rage (mm) .51							
Slope	e (%)	12	- P	erv Depre	ss Storage	(mm)	5.08	-			
						80 - 80 - 1 -	·				
aily Eva	aporation (n	nm/day)							1.0		
Jan	Feb	Mar	Apr	May	Jun	Jul 2 01	Aug	Sep	Oct	Nov	Dec
U	V	0	2.34	2.04	5.01	3.01	3.01	2.04	2.34	U	0
Infiltrati	on					atch Basins	3			12	
Max. Infiltation Rate (mm/hr) 63.5				# of Catch basins 2 Resets				Resets a	II parameters		
Min Infiltration Data (contra)				catchment width				nent width.			
			/	00055		Controlled Roof Runoff					
Infiltra	ation Decay	Rate (1/s)				Roof Runof	f (m3/s)			Defa	ult Values
Infiltration Regen Rate (1/s)				.01			(moro)	1		-	

Dimensions And Capacities

Model	Diam. (m)	Depth (m)	Float. Vol. (L)	Sediment Vol. (m3)	Total Vol. (m3)	
Inavailable	0.91	1.22	123	0.5	0.8	
HD 4	1.22	1.37	266	0.9	1.6	
HD 5	1.52	1.68	484	1.7	3.1	
HD 6	1.83	1.98	802	2.9	5.2	
Inavailable	2.13	2.29	1225	4.6	8.2	
HD 8	2.44	2.59	1862	6.8	12.1	
HD 10	3.05	3.2	3615	13	23.3	
HD 12	3.66	3.81	6222	22.2	40	
pth = Depth fi	rom outlet invert to	inside bottom of	tank			

Generic HD 4 CAD Drawing

TSS Buildup And Washoff

eral Dimensions Rainfall Site	TSS PSD TSS Loading Qua	intity Storage By-Pass	Custom CAD Video Other	
SS Buildup ☐ Power Linear ✔ Exponential ☐ Michaelis-Menton	Street Sweeping Efficiency (%) Start Month Stop Month	30 May 💌 Sep 💌	Soil Erosion	
SS Washoff Power-Exponential Rating Curve (no upper limit) Rating Curve (limited to buildu	Available Fract	t to Default Values		
SS Buildup Parameters imit (kg/ha) 28.02 Coeff (kg/ha) 67.25 Exponent 5	TSS Washoff Parameters Coefficient 0855 Exponent 1.1	TSS Buildup	Area Curb Length	

Upstream Quantity Storage

Dim	iensions Rainfall Site	e TSS PSD TSS Loadir	g Quantity Storage	By-Pass Custom CAD Video Other
luantit	y Control Storage			Notes:
	Storage (m3)	Discharge (m3/s)		1. To change data just click a
	U	U		cell and type in the new value (s)
•				2 To add a row just go to the
				bottom of the table and start
				typing.
				3. To delete a row, select the row
				by clicking on the first pointer column, then press delete
				4. To sort the table click on one
				of the column headings
				Chara I

Other Parameters

eneral Dimensions Rainfall Site TSS PSD TSS Loading Quantity Storage Scaling Law ✓ Peclet Scaling based on diameter x depth ← Peclet Scaling based on surface area (diameter x diameter) TSS Removal Extrapolation ✓ Extrapolate TSS Removal for flows lower than tested ← No TSS Removal extrapolation for flows lower than tested ← No TSS Removal extrapolation for lower flows or inter-event periods	e By-Pass Custom CAD Video Other HydroDome Design ✓ High Flow Weir Flow Control (parking lot storage) Must add Quantity Storage Table
Lab Testing Use NJDEP Lab Testing Results Use ETV Canada Lab Testing Results TSS Removal Results Required TSS Removal C Cloue Ministry (%) [20.0] Enter required	TSS Removal (%)

Flagged Issues

If there is underground detention storage upstream of the HydroDome please contact Hydroworks to ensure it has been modeled correctly.

Hydroworks Sizing Program - Version 5.6 Copyright Hydroworks, LLC, 2022 1-800-290-7900 www.hydroworks.com