September 21, 2023

The Corporation of the Town of Fort Erie 1 Municipal Centre Dr. Fort Erie, Ontario, L2A2S6

1127 Garrison Road, Fort Erie Functional Servicing Report (Revised)

1.0 Background & Information

1.1 Introduction

LandSmith Engineering & Consulting Ltd. have been retained by TrintyStar Aquila Inc. for the completion of a Functional Servicing Report in support of Re-zoning and Official Plan amendment applications for the lands located at 1127 Garrison Road in the Town of Fort Erie. A pre-consultation for the property was completed by NPG Planning Solutions in spring of 2022 on behalf of the owner, and the City's comments were provided through the planner as per the meeting of May 12th, 2022.

The purpose of this Functional Servicing Report is to review the existing municipal services currently in place and available for the servicing of the 90 new units on Garrison Road and ensure their suitability for the proposed Re-zoning and Official Plan Amendment applications. In addition, this report will address the local Stormwater Management (SWM) context for the lot and the required stormwater quantity and quality control measures.

1.2 Site Location & Proposed Development

As noted above, the site being analyzed is located at 1127 Garrison Road, in the Town of Fort Erie. The property is located approximately between Crescent Road and Kraft Rd on the south side of Garrison Road. The lot is currently designated Commercial and Urban residential and zoned Highway Commercial (C3), Neighbourhood Development (ND), and Environmental Conservation (EC).

The current proposal is for the redesignation and rezoning of the land to permit residential uses. This is illustrated on the Concept Plan prepared by Organica Studio + Inc. which is attached to this report within Appendix 'A' for reference purposes. As can be seen, the existing building is to be removed, being replaced by four proposed blocks consisting of one mixed use (commercial and residential) block and three residential blocks, totalling 90 units. The site location plan below further illustrates the location of the proposed development in the context of the local Fort Erie area.

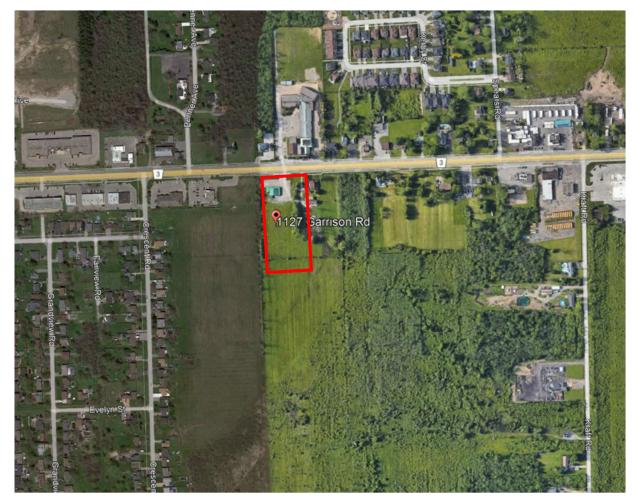


Figure 1: Site Location Plan

2.0 Servicing Analysis

2.1 Water Servicing:

There is a 300mm diameter watermain on Garrison Road as indicated on the Plan & Profile drawing for Garrison Road from Fort Erie Infrastructure Services, which is contained within Appendix 'E' for reference purposes.

Fire-flows have been calculated for each of the new residences according to the methodology recommended by the Ontario Building Code. Using this method, the required fire-flow was calculated to be 45 L/s. Given the 300mm diameter of the existing watermain on Garrison Road it is expected that this fire-flow can be provided. Details of the fire-flow calculation are contained within Appendix 'B' for reference together with a Fire Protection Sketch which illustrates the setbacks of the proposed buildings from the nearest adjacent units.

In addition to the fire-flow calculations, domestic water-use calculations for each of the buildings was completed based on the number of units proposed and the expected number of fixtures for each unit. Based on the Fixture Unit Method as outlined in OBC Table 7.6.3.2.A it is expected that the required peak instantaneous domestic use flow rate for the site will be 9.77 L/s.

A water service size of 150mm can be utilized to provide both the required domestic flows and fireflows. A Preliminary Servicing Plan has been attached to this report for reference purposes within Appendix 'B' and this plan illustrates the proposed location of the water service and the connection point to each building. It is expected that each building will be sprinklered for additional fire protection, however these details will be finalized at the site-plan stage.

2.2 Sanitary Servicing:

There is a 450mm sanitary sewer on Garrison Road. The site will be connected to the 450mm sanitary sewer with a 200mm sanitary pipe entering the property on the north side of the property. Each of the four blocks will be serviced via a 150mm diameter service connections as illustrated on the Preliminary Servicing Plan contained within Appendix 'B' for reference purposes.

The expected sanitary generation rates for the site have been calculated using the Region of Niagara Standard rate of 275 Liters per capita per day. Based on the proposal for 90 units it is expected that the population for the development will be approximately 180 person (3 persons / unit).

Based on this population the expected peak sanitary generation rate from the site will be:

(275 L/cap/day x 270 persons) / (24 x 60 x 60) = 0.859 Liters / Second

Peaking Factor = 4.098 (Harmon Formula) TOTAL PEAK FLOW = 3.52 Liters / Second

The areas contributing to the local sanitary sewer are described within the Region of Niagara Water/Wastewater Master Servicing Plan (WWMSP, 2016) Figure 4.H.1 which has been included within Appendix 'B' for reference purposes. Based on the areas contributing to the existing 450mm sanitary sewer on Garrison Road it is expected that there will be ample capacity within the conveyance system for the proposed density of the development.

The proposed development site is within the catchment of the Alliston Avenue Sanitary Pumping Station (SPS). The Alliston Avenue SPS is noted to have an operational firm capacity of 43 L/s while experiencing an average dry-weather flow of 5.8 L/s (in 2016). It should be noted that the SPS was experiencing high stormwater infiltration and that the peak wet-weather flows were above the

operational firm capacity in 2016. This SPS was expected to be upgraded due to growth triggers and is noted within the Niagara Region WWMSP to be upgraded with a pump replacement to increase the firm capacity of the station between 2022-2031.

Relevant pages from the WWMSP are included in Appendix 'B' for reference purposes – further discussion should be carried out with the Region to determine whether this upgrade would be required at the present time. It appears that the domestic flows can be accommodated within the SPS under its current condition, however stormwater infiltration is using significant capacity within the station. The Town of Fort Erie has an on going wet-weather flow reduction program which may have decreased wet weather flows within the catchment.

2.3 Stormwater Servicing:

The existing grades of the subject lands are illustrated on the Topographic Survey prepared by The Larocque Group and contained within Appendix 'A' for reference. This topographic survey was analyzed in order to determine the pre-development drainage pattern for the lands. A Pre-Development Drainage Area Plan was then prepared and is contained within Appendix 'D' for reference purposes. As can be seen, under the pre-developed condition the site drains almost entirely from north to south and onto the adjacent lands. There is a small intermittent swale which runs southerly on the lands of 885 Kraft Road which receives the runoff from the subject lands and conveys it further southerly toward Lake Erie. An image from the Niagara Peninsula Watershed Explorer indicating the location of this swale is included in Appendix 'D' for reference.

The adjacent infrastructure was reviewed to determine whether it would be possible to provide a storm connection from the subject lands to Garrison Road. The Plan and Profile drawing for Garrison Road indicates that there is a 450mm concrete storm sewer along the north side of Garrison Road – however review of the invert elevation of the storm sewer indicates that it is not at sufficient depth to service the subject lands. The storm sewer invert at the subject lands is ~185.75m while the grade of the site at the southern limit is 185.25m – to extend storm sewer to the southern limit of the site the grade would have to be raised by approximately 2m. This would bring in a requirement for large retaining walls and significant fill import which would not be feasible.

Given the lack of available storm sewer at sufficient depth for the servicing of the site it was decided to maintain the existing drainage pattern, and provide on-site storage for stormwater in the form of low-impact development (LID) features which can provide both stormwater quality and quantity control.

A MIDUSS v2 simulation of the pre-development peak runoff rates was completed and the results are contained within Appendix 'D' for reference purposes. The Chicago 3-hour storm was used in this

analysis as it's peaked rainfall hyetograph presents a conservative analysis with high peak-flow rates. The table below summarizes the peak runoff rates to the southerly lands under the pre-development condition.

Return Period	2-Year	5-Year	100-Year
Area 1, Peak Flow	0.006	0.006	o o=9
(m ³ /s)	0.026	0.036	0.078

Table 1: Pre-Development Drainage Peak Flow Rates

MIDUSS v2 was then utilized to determine the amount of stormwater storage required in order to limit the post-development flows to the pre-development level for the 100-year return period 'worst-case' storm. Based on this analysis it was determined that 224 cubic meters of stormwater storage would be required.

The stormwater storage required will be provided through the use of permeable pavers in several areas of the development site. These areas are indicated on the post-development storm drainage area plan which is contained within Appendix 'D' for reference purposes. The permeable pavers are constructed on a base of 2" clear-stone which functions as a reservoir, capturing stormwater runoff and directing it to groundwater infiltration. Based on a 450mm clear stone reservoir, the permeable pavers will provide 0.18 cubic meters of stormwater storage per 1 square meter area. Based on the overall area of permeable pavers 285 cubic meters of storage is being provided on site within the paver reservoir.

In addition to the permeable pavers, a bio-swale is proposed to be provided at the site's southern limit. This bio-swale will further promote groundwater recharge and infiltration and based on it's proposed cross section it will provide a further 35 cubic meters of storage for stormwater runoff.

Given the proposed capture of stormwater through the permeable pavers and bioswale arrangement the peak runoff rates for the site under the post-development condition and the various return period storms is as follows:

Return Period	2-Year	5-Year	100-Year
Peak Runoff (m³/s, No SWM)	0.112	0.154	0.266
Storage Used (m ³)	132.98	162.02	265.8
Peak Discharge (m ³ /s)	0.011	0.036	0.078

Table 2: Post Development Drainage, Storage & Peak Flow Rates

As can be seen, the proposed arrangement accounts for the required storage and will limit peak flows from the site to the pre-development level.

Given the expected clayey soil conditions the permeable pavers will be furnished with 100mm subdrain pipe outlets to convey stormwater to the adjacent swales and ultimately to the proposed bioswale in the case that the underlying reservoir exceeds its maximum capacity.

Permeable pavers also provide a measure of stormwater quality control because stormwater contaminants are filtered by a filter cloth prior to entry to the reservoir, while smaller contaminants are passed through the sand filter located prior to re-entering the soil. The proposed bio-swale will also provide a measure of stormwater quality control as it also directs runoff to a sand filter prior to the ground water recharge. Under the proposed layout none of the stormwater runoff exiting the site is expected to carry sediment and thus the MECP stormwater criteria of 70% long term total suspended solids removal can be easily met and exceeded.

2.4 Grading Considerations:

As noted above, a topographic survey of the lot completed by The Larocque Group in 2022 is contained within Appendix 'A' for reference purposes. As can be seen there is a significant grade difference between the elevation of Garrison Road and the existing parking lot for the current building. From that parking area the site is relatively flat and drains southerly as noted in Section 2.3.

A preliminary Grading Plan has bene provided within Appendix 'D' for reference and it illustrates how the site can be graded, with swales along both east and west property line draining from north to south, flat permeable paver areas and a flat bioswale with outlet to the lands to the south at the lowest area along the south property line. A final detailed Grading Plan can be provided for the site at the Site Plan stage.

3.0 Conclusion

In conclusion, based on the foregoing analysis we recommend that the proposal for the creation of the four new blocks on 1127 Garrison Road can be completed in accordance with the requirements of the Region of Niagara and Town of Fort Erie as follows:

- Water servicing can be provided through a proposed 150mm watermain entering the site. Fire demands for the new dwellings will be 45 Lps based on the OBC Calculation for required fireflows while peak domestic demand is expected to be 13.37 L/s. These water demands can be met through the local adjacent 300mm watermain on Garrison Road.
- 2. There is a proposed 200mm sanitary sewer on the property which can be used for the servicing of the new buildings. Based on a population of 270 persons for the 90 units a peak domestic sanitary flow rate of 3.52 L/s is expected to be generated from the site. The local 450mm trunk sanitary sewer on Garrison Road can accommodate this flow, while the local Alliston Avenue SPS can accommodate the domestic flows but may not accommodate these flows based on local infiltration rates. Further discussion with the Region of Niagara should be carried out to determine if the single pump upgrade noted within the 2016 WWMSP will be required.
- 3. Drainage from the site cannot be directed to the Garrison Road storm sewers based on the grading constraints. It is proposed that a combination of permeable paver parking areas and bio-swale can be utilized to provide stormwater attenuation and limit peak runoff rates to the pre-development level while providing the appropriate level of stormwater quantity control.
- 4. A preliminary Grading Plan has been provided illustrating how the proposed development can be graded given the constraints of the local topography.

Thank you for your consideration of the above Functional Servicing Report should you have any questions or require clarification with respect to any part of the above please do not hesitate to contact the undersigned.

Respectfully submitted,

Andrew Smith, P. Eng. Principal & Director LandSmith Engineering & Consulting Ltd.

4.0 Attachments:

Appendix 'A'

Concept Plan by Organica Studio + Inc. Topographic Survey by The Larocque Group

Preliminary Grading Plan Preliminary Servicing Plan

Appendix 'B'

Fire Protection Plan Fire Flow Requirement Calculations – Unit 1, 2, 3 Domestic Water Demand Calculations

Appendix 'C'

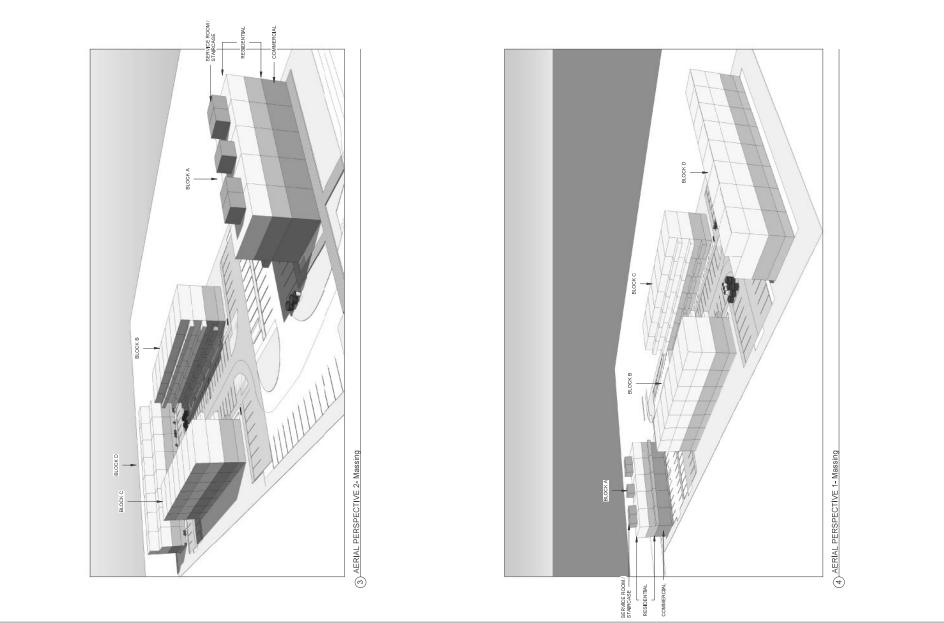
Sanitary Drainage Area Plan Pages from Niagara Region Water / Wastewater Master Servicing Plan (2016)

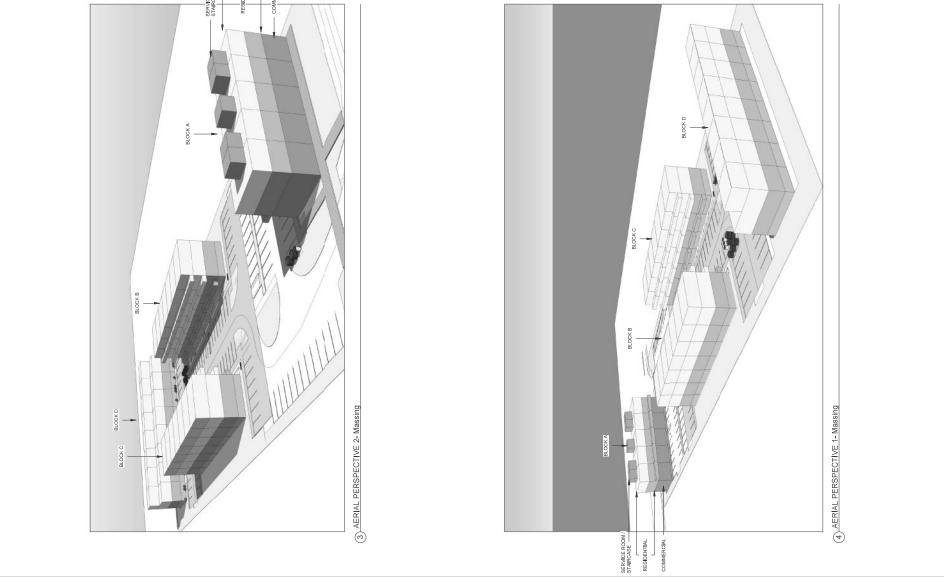
Appendix 'D'

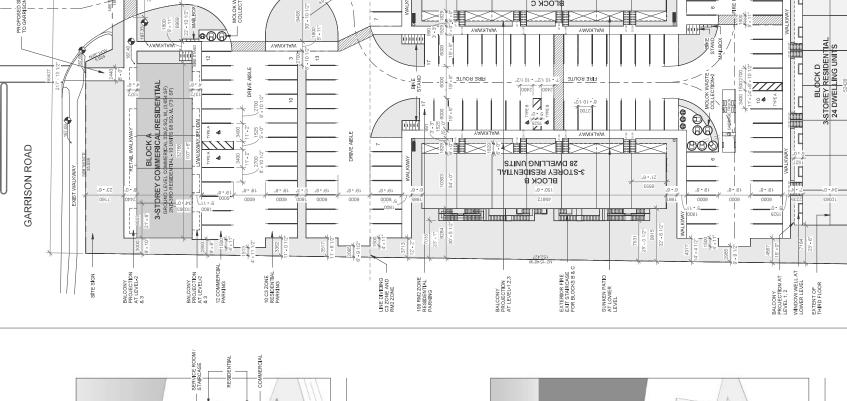
Pre-Development Drainage Area Plan NPCA Figure re: Drainage Context Post-Development Drainage Area Plan Permeable Paver Fact Sheet Bio-Swale Fact Sheet

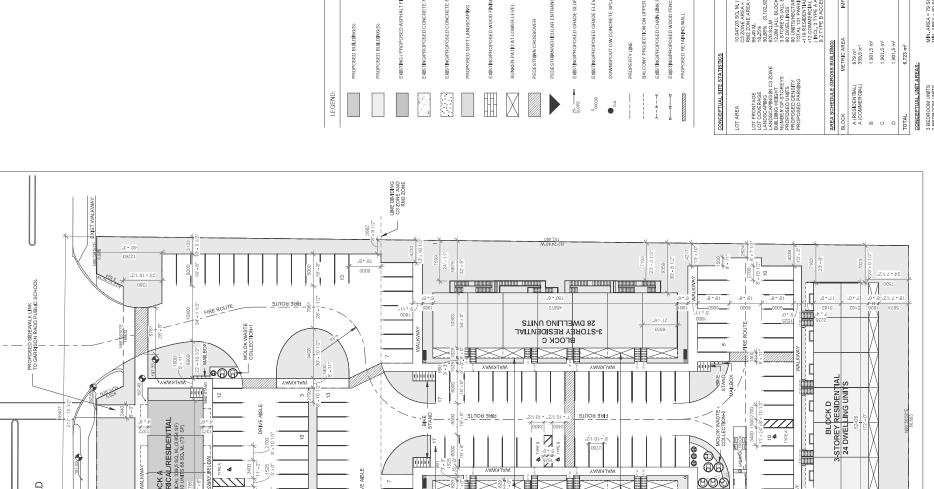
Appendix 'E'

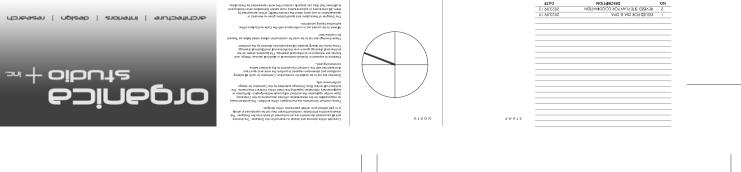
Garrison Road Plan & Profile, Sheet 6 Garrison Road Plan & Profile, Sheet 7 East Bertie Sewerage System Plan & Profile

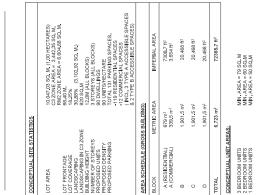

Attachments:


Appendix 'A'


Concept Plan by Organica Studio + Inc. Topographic Survey by The Larocque Group


Preliminary Grading Plan Preliminary Servicing Plan





FINISH

PING

A100

21084

NUMBER

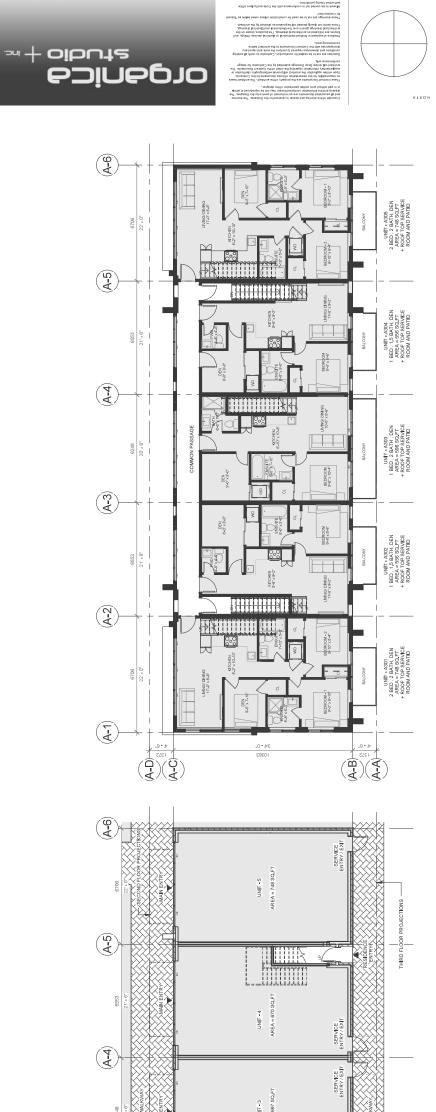
PROJECT 1

SHEET

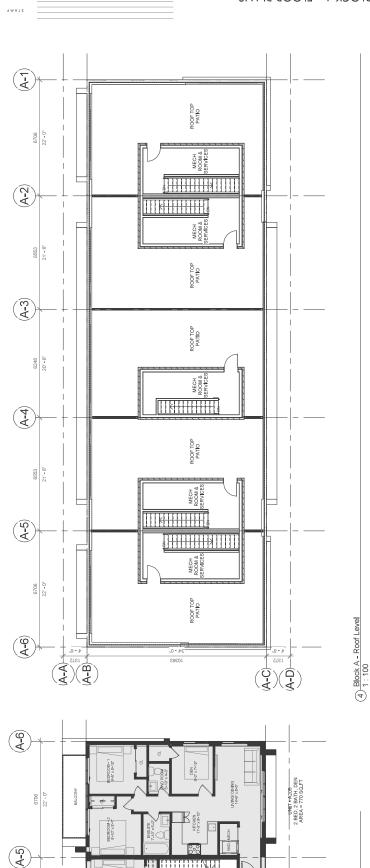

S C A L E D A T E D R A W N C H E C K E D

1928¹

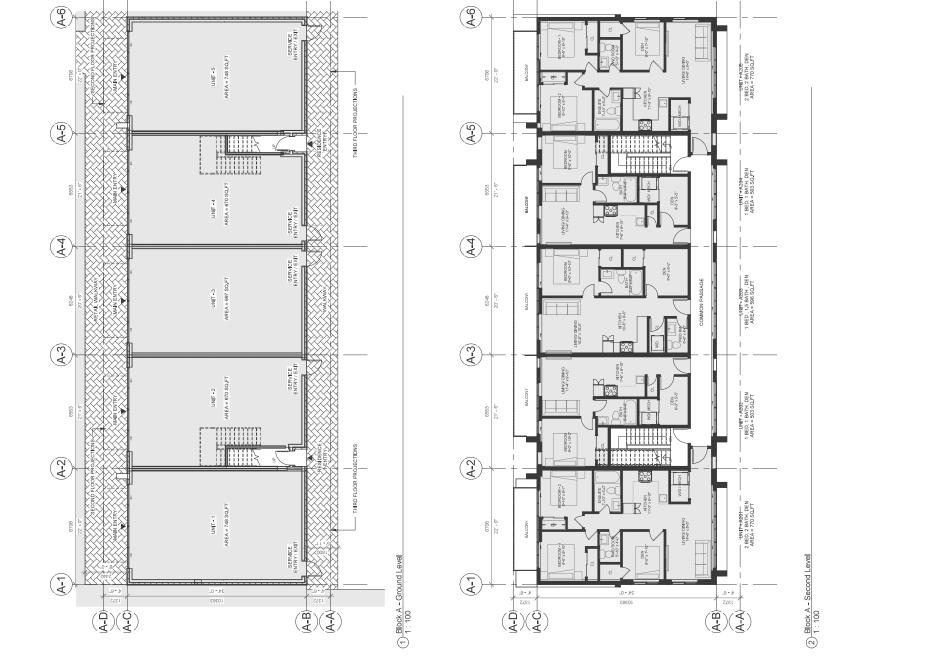
SUNKEN PATIO AT LOWER LEVEL


 \bigoplus

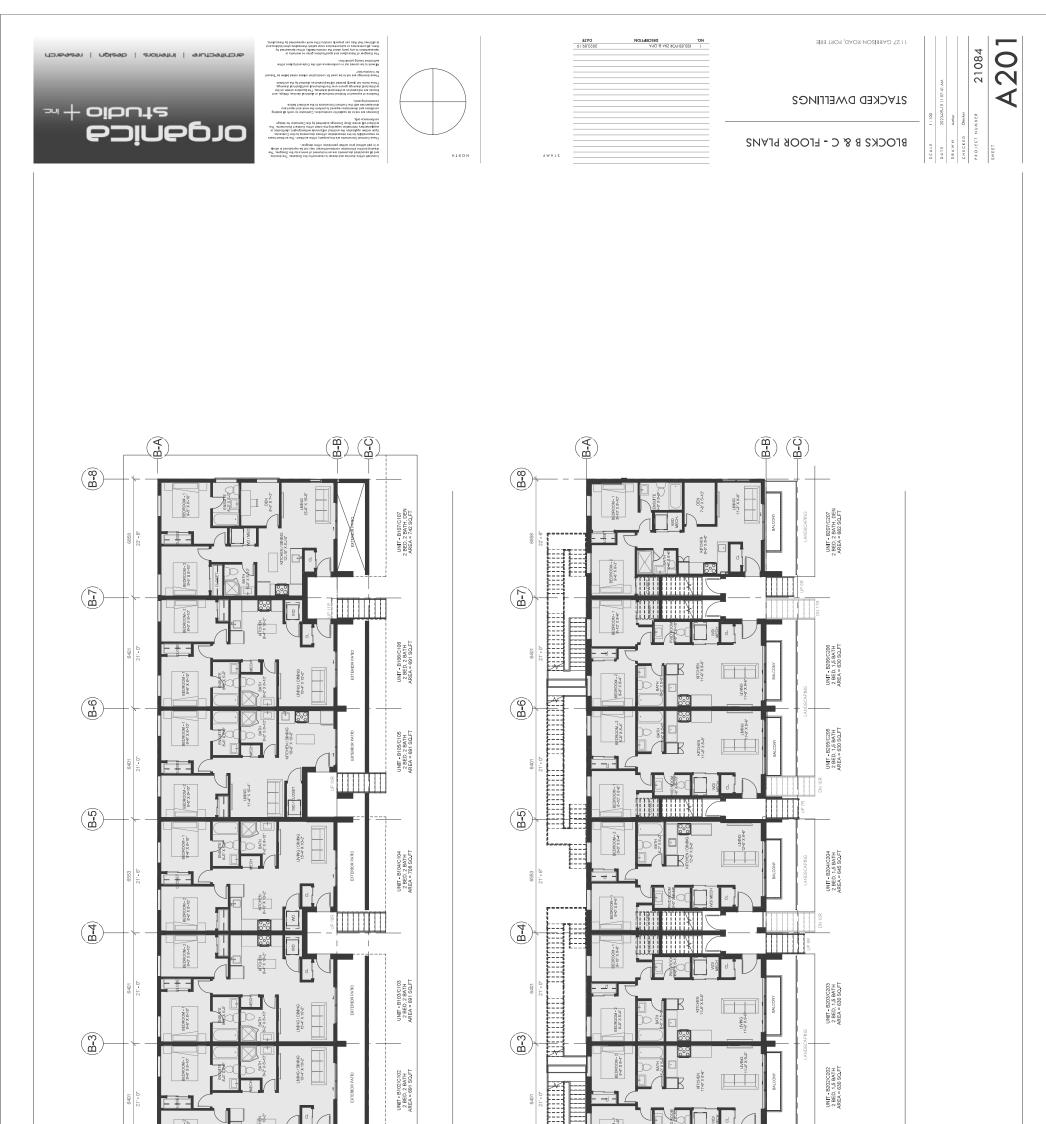
(1) SITE PLAN 1:325



1127 GARRISON ROAD, FORT ERIE

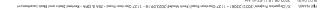

POSED GRADE ELEVAT

architecture | interiors | design | research



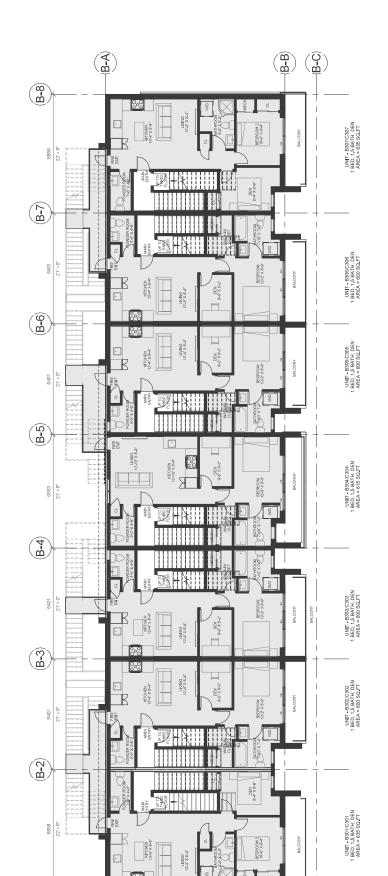
(3) Block A - Third Level 1 : 100

2023-09-19 11:07:39 AM



 $\left(\begin{matrix} \mathbf{B} \\ \mathbf{B} \end{matrix} \right)$

||||≹||



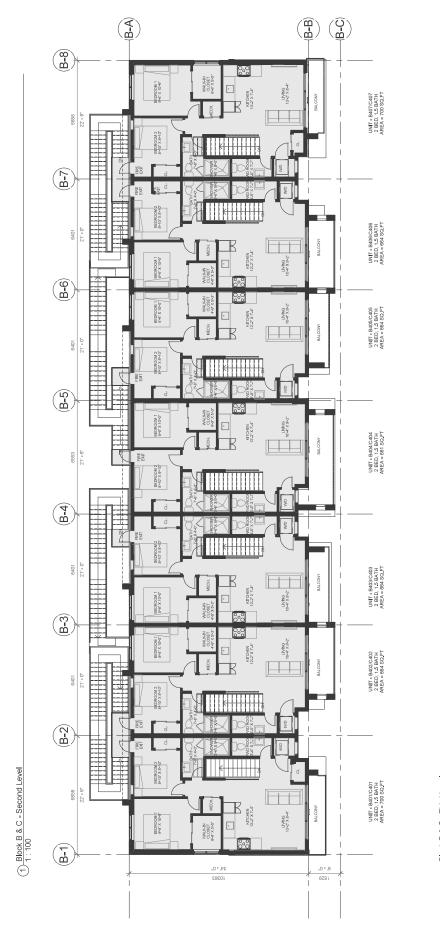
9

808

000

(B-Z)

ေဂိ


34, = 0,

.0 • ,9

 $\widehat{\left[\frac{1}{2} \right]}$

architecture | interiors | design | research

6⊃i∩6p10 ⇒ + oibute

of How IA. for Construction ens zenučut nutsečiricna medi ezorit

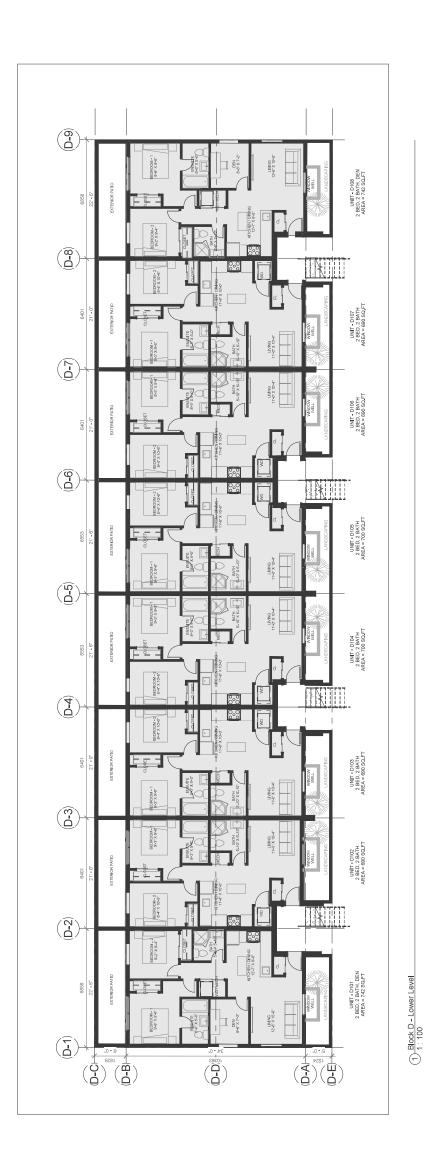
unde los g

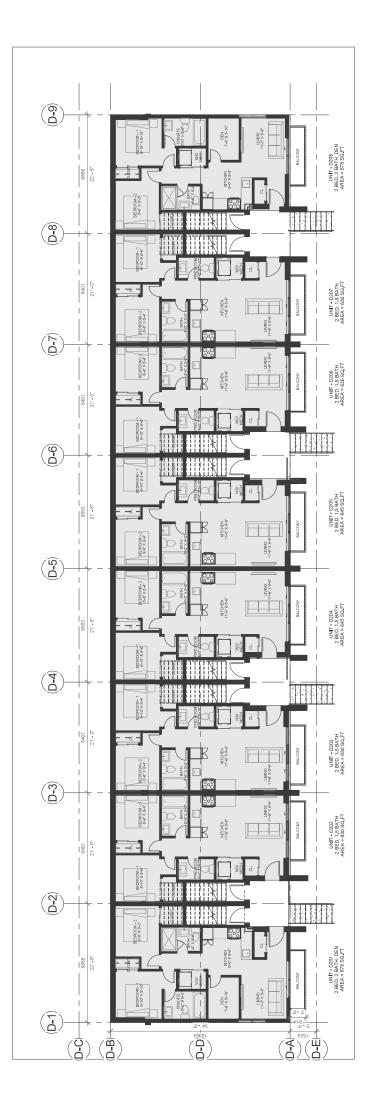
a nattine nagu Upon witten a Vetnemetgquu Matematica eonemotes

tra lla bra de grinnesio de grinnesio

e Contractor. Cotarifostion or Documents, The

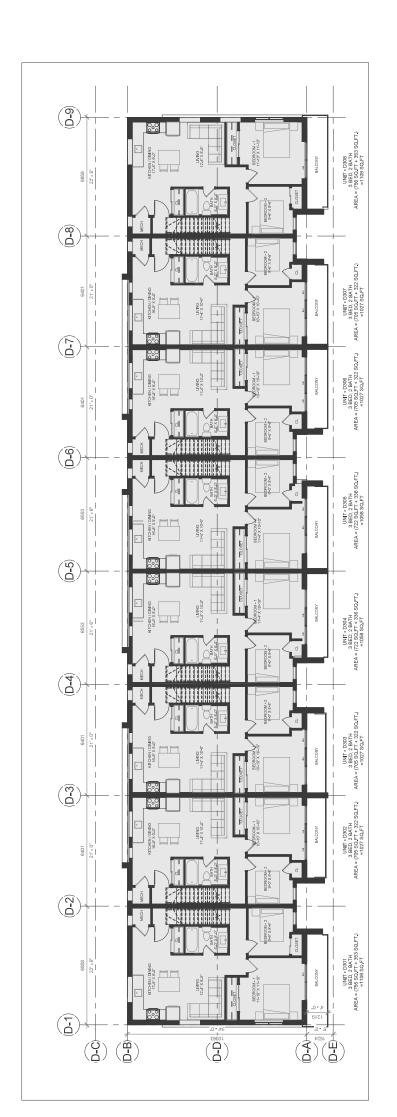
effortwice beau effortwice beau

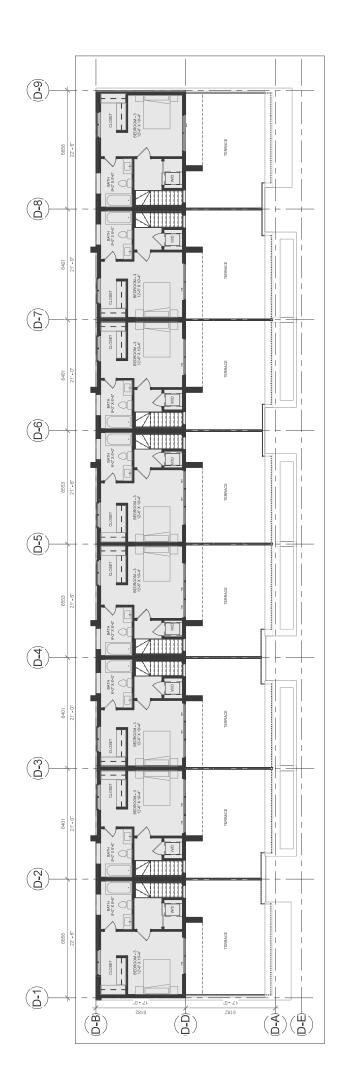

A202


21084

NUMBER

e priverb

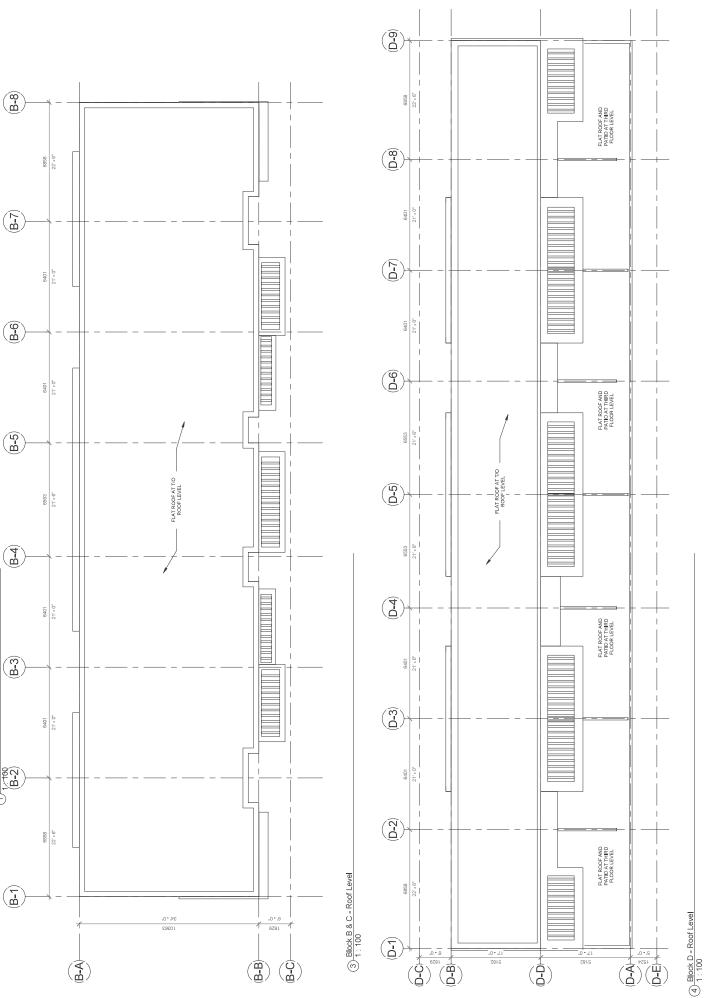

нтяои

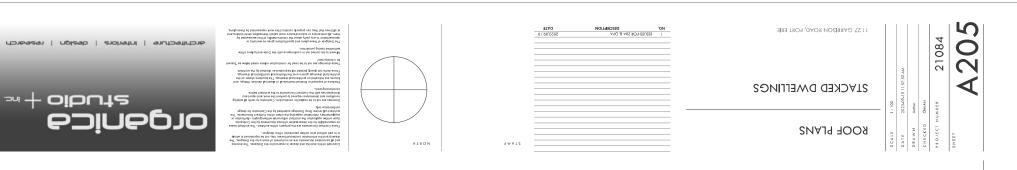

erif nargisat elotwini ber

vuzencirczal skala ben zriała beriveli. - ARD & A83 - backi narima D TST I - 81.90.5505/jebc// tive//backi narima D TST I - 18025/5505/jebc// marina D TST I - 18055/5505/jebc// marina D TST I - 18055/ MA TST I - 18055/jebc// marina D TST I - 18055/5505/jebc// m

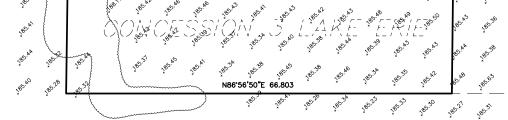
2 Block D - Ground Level 1:100



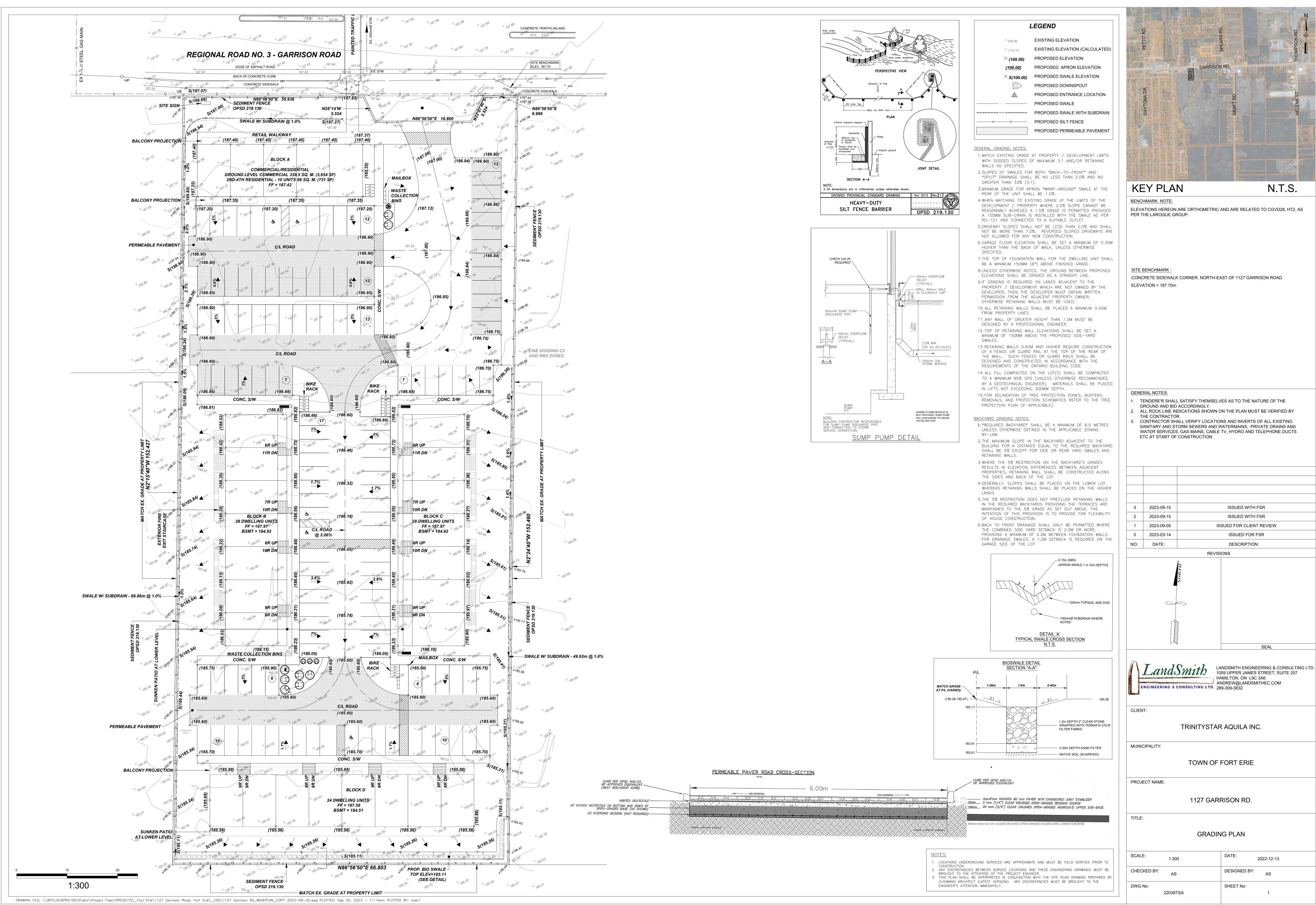


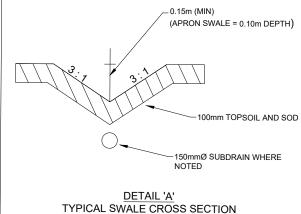

(1) Block D - Second Level 1 : 100

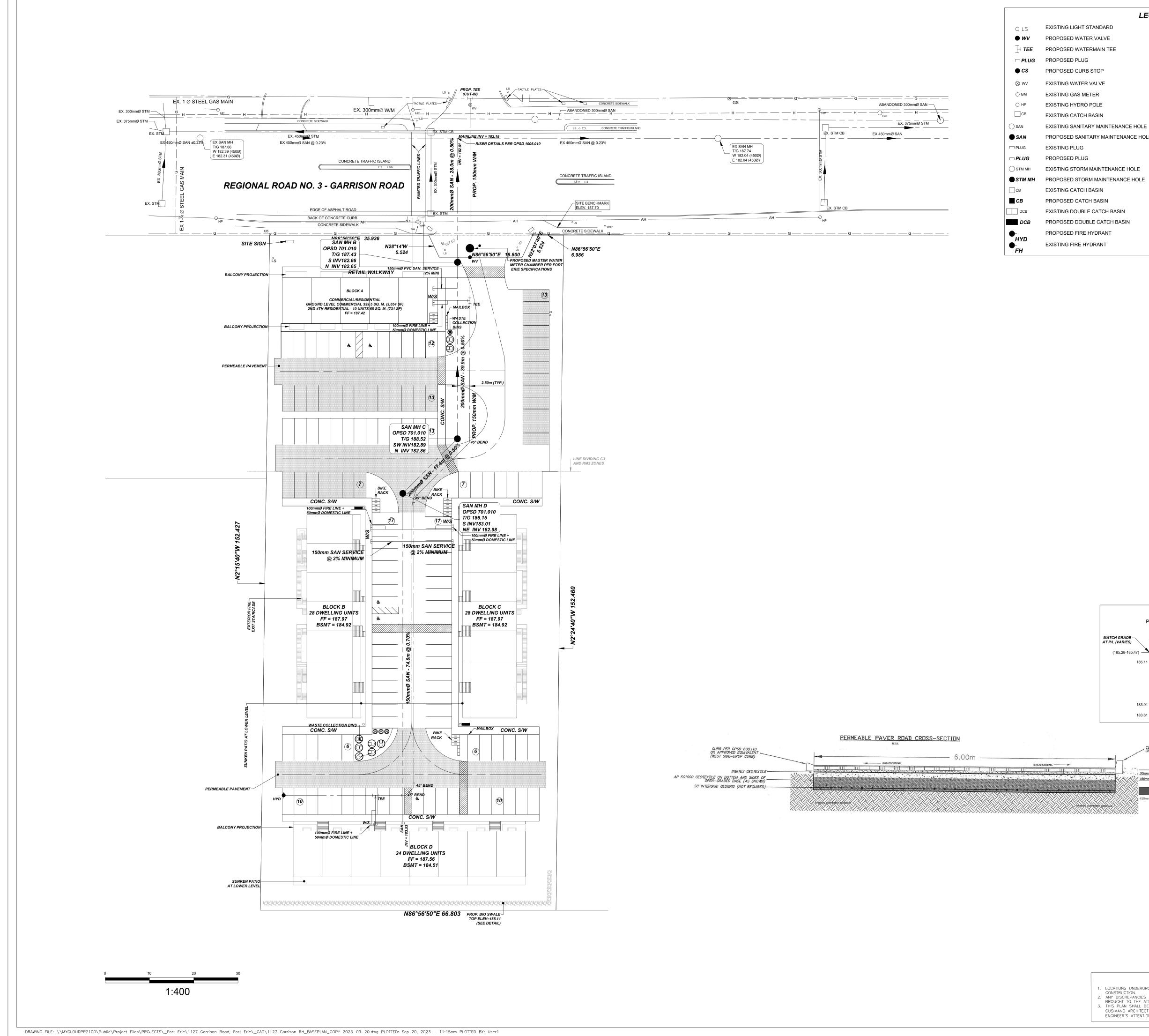
B.E. Marken S. M. Corganica Projects / 2022/22021 - 1127 Garrison Road Read / Revi Madel / 2023/091/97 Garrison Road - Revised Static Location Advector in the second structure of the second structure and structure in the second structure and structure


2 Block D - Third Level 1 : 100

SITE CONDITION PLAN PART OF LOT 4 CONCESSION 3 LAKE ERIE (GEOGRAPHIC TOWNSHIP OF BERTIE) TOWN OF FORT ERIE REGIONAL MUNICIPALITY OF NIAGARA SCALE 1:400 METRIC 10m 0 10m 20m	REGIONAL ROAD No. 3 (BY BY-LAW No. 8954-98, TRANSFERRED BY ORDER-IN-COUNCIL O.C. 540/97, DESCRIBED IN INSTRUMENT No. 724387 AND LT118209)	GARRISON ROAD (AS LOCALLY KNOWN) (ORIGINAL ROAD ALLOWANCE BETWEEN CONCESSION 3 LAKE ERIE AND CONCESSION 4 NAGARA RIVER) PIN 64236-0425(LT) i ^{40⁴⁰} ^{46⁴⁰} ^{161⁴⁰} ^{161⁴⁰} ^{161⁴⁰} ^{161⁴⁰} ^{161⁴⁰} ¹⁶¹
WIDENED BY EXPROPRIATION PLAN No. B84584	10 ¹⁰ 0 ¹⁰	H BACK OF CONCRETE CURB
PIN 64210–0154(LT) PART 2, 59R–11500		Image: Product of the second of the secon
<section-header><section-header></section-header></section-header>	198.78 198.78 <td>198⁻¹⁶ 198⁻¹ 198⁻¹ 198⁻¹ 198⁻¹ 198⁻¹ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198⁻¹⁰ 198</td>	198 ⁻¹⁶ 198 ⁻¹ 198 ⁻¹ 198 ⁻¹ 198 ⁻¹ 198 ⁻¹ 198 ⁻¹⁰ 198 ⁻¹⁰ 198






DATE : <u>SEPTEMBER_20, 2022</u> FILE No. : <u>NS2022-048___</u> DWG.FILE : <u>NS2022-048_01_</u>

PIN 64210-0061(LT)

PART 2, 59R-1298

LEGEND

EXISTING AERIAL HYDRO

PROPOSED WATER SERVICE

EXISTING WATERMAIN

EXISTING SANITARY

EXISTING STORM

PROPOSED STORM

PROPOSED SANITARY

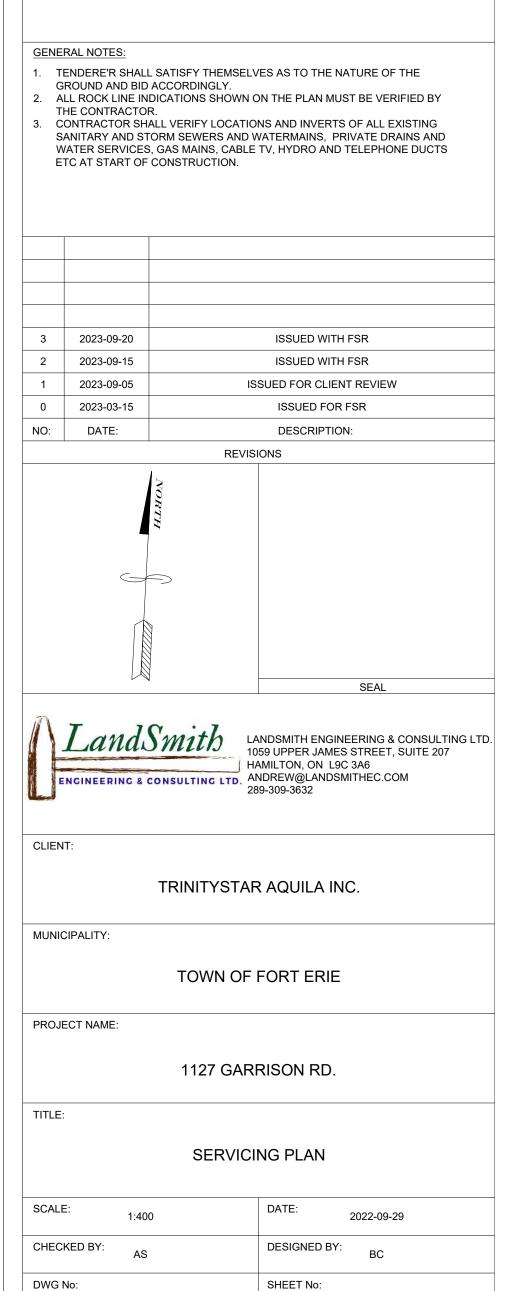
_____ _____ _____ _ _ _ _

PROPOSED SANITARY MAINTENANCE HOLE

ARRISON RD

KEY PLAN

BENCHMARK NOTE:


N.T.S.

ELEVATIONS HEREON ARE ORTHOMETRIC AND ARE RELATED TO CGVD28, HT2, AS PER THE LAROQUE GROUP.

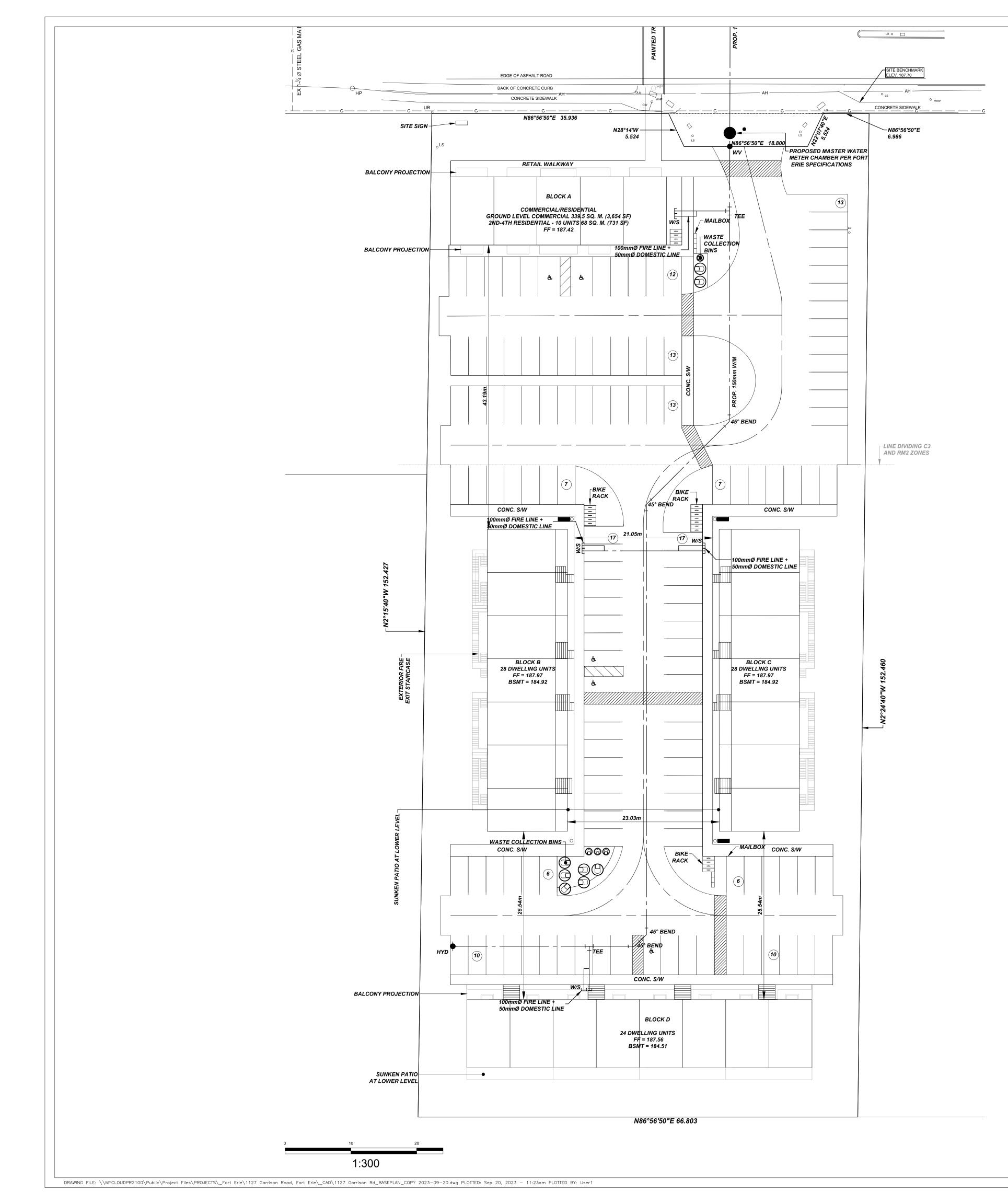
SITE BENCHMARK :

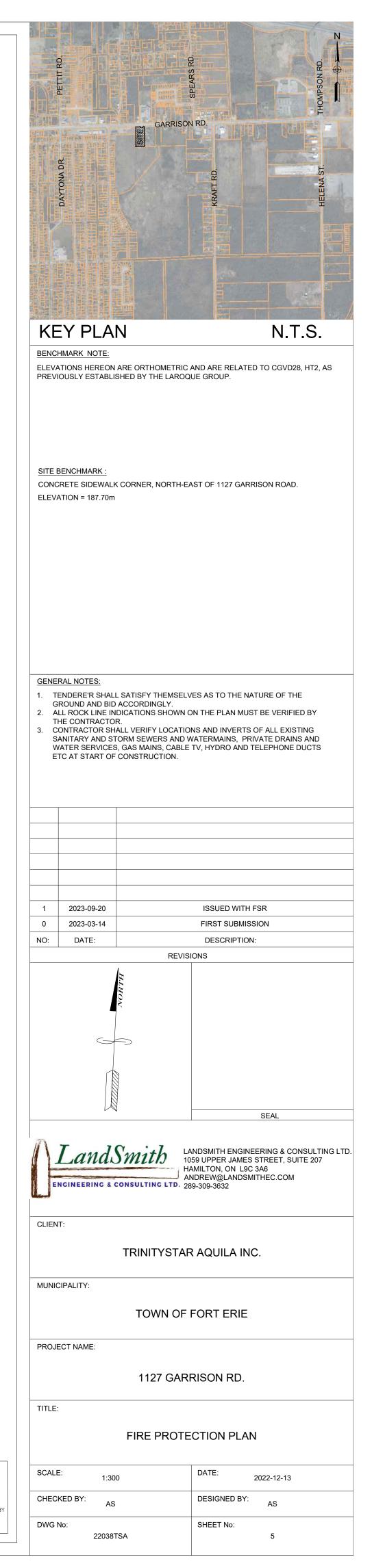
CONCRETE SIDEWALK CORNER, NORTH-EAST OF 1127 GARRISON ROAD. ELEVATION = 187.70

- **BIOSWALE DETAIL** SECTION "A-A" P/L 1.08m 1.0m 0.45m MATCH GRADE -AT P/L (VARIES) (185.28-185.47) -3:1 185.26 185.11 1.2m DEPTH 2" CLEAR STONE - WRAPPED WITH TERRAFIX 270-R FILTER FABRIC 183.91 4 9 4 0.30m DEPTH SAND FILTER 183.61 - NATIVE SOIL (SCARIFIED) .
 - CURB PER OPSD 600.110 OR APPROVED EQUIVALENT 150mm 20 mm (3/4") CLEAR CRUSHED OPEN-GRADED AGGREGATE UPPER SUB-BASE
 - APPROVAL OF THIS DRAWING IS FOR MATERIAL ACCEPTABILITY AND COMPLIANCE WITH MUNICIPAL AND PROVINCIAL SPECIFICATIONS AND STANDARDS ONLY. APPROVAL AND INSPECTION BY THE CITY OF THE WORKS DOES NOT CERTIFY THE LINE AND GRADE OF THE WORKS AND IT IS THE OWNER'S RESPONSIBILITY TO HAVE THEIR ENGINEER CERTIFY THIS ACCORDINGLY.
 - NOTES re: SEPARATION DISTANCES: 1. MINIMUM HORIZONTAL SEPARATION BETWEEN WATER SERVICES / MAINS AND SEWER DRAINS AND MUNICIPAL SEWER MAINS SHALL BE 2.5M MEASURED FROM THE CLOSEST PIPE EDGE TO THE CLOSEST PIPE EDGE.
 - 2. VERTICAL SEPARATION WHERE WATER SERVICE / MAIN PASSES OVER A SEWER DRAIN OR MUNICIPAL SEWER MAIN MUST BE A MINIMUM 0.25M UNLESS GREATER SEPARATION IS REQUIRED TO PROVIDE PROPER BEDDING AND STRUCTURAL SUPPORT. WATER SERVICES/MAINS PASSING UNDER SEWER DRAINS OR MUNICIPAL SEWER DRAINS MUST HAVE A SEPARATION OF 0.50M BETWEEN THE INVERT OF THE SEWER MAIN/DRAIN AND THE CROWN OF THE WATER SERVICE/MAIN.
- . LOCATIONS UNDERGROUND SERVICES ARE APPROXIMATE AND MUST BE FIELD VERIFIED PRIOR TO LOCATIONS UNDERGROUND SERVICES ARE AFFINATIONAL AND THESE ENGINEERING DRAWINGS MUST BE CONSTRUCTION.
 ANY DISCREPANCIES BETWEEN SERVICE LOCATIONS AND THESE ENGINEERING DRAWINGS MUST BE BROUGHT TO THE ATTENTION OF THE PROJECT ENGINEER.
 THIS PLAN SHALL BE INTERPRETED IN CONJUNCTION WITH THE SITE PLAN DRAWING PREPARED BY CUSIMANO ARCHITECT (LATEST VERSION). ANY DISCREPANCIES MUST BE BROUGHT TO THE ENGINEERIC ATTENTION (MALE DIATELY) ENGINEER'S ATTENTION IMMEDIATELY.

22038TSA

2


Appendix 'B'


Fire Protection Plan

Fire Flow Requirement Calculations - Unit 1, 2, 3

Domestic Water Demand Calculations

NOTES:
1. LOCATIONS UNDERGROUND SERVICES ARE APPROXIMATE AND MUST BE FIELD VERIFIED PRIOR TO CONSTRUCTION.
2. ANY DISCREPANCIES BETWEEN SERVICE LOCATIONS AND THESE ENGINEERING DRAWINGS MUST BE BROUGHT TO THE ATTENTION OF THE PROJECT ENGINEER.
3. THIS PLAN SHALL BE INTERPRETED IN CONJUNCTION WITH THE SITE PLAN DRAWING PREPARED BY CUSIMANO ARCHITECT (LATEST VERSION). ANY DISCREPANCIES MUST BE BROUGHT TO THE ENGINEER'S ATTENTION IMMEDIATELY.

Date: 3/14/2023

FIRE FLOW DEMAND REQUIREMENTS

Project: 1127 Garrison Road, UNIT 1 Method: OFM-TG-03-1999 FIRE PROTECTION WATER SUPPLY GUIDELINE FOR PART 3 IN THE ONTARIO BUILDING CODE http://www.mcscs.jus.gov.on.ca/english/FireMarshal/Legislation/TechnicalGuidelinesandReports/TG-1999-03.html

Q= K x V x S_{Tot}

Formula:

Where:

- Q = minimum supply of water in litres
- K = water supply coefficient (Table 1) V = total building volume in cubic meters
- S_{Tot} = total of spacial coefficient tables

Volume (V)

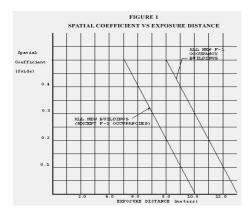
1st + 2nd + 3rd + 4th Floor			
Ground Floor Area:	543.33 (sq.m)		
Height:	12 (m)		
Volume 1 (Building):	6519.96 (cu.m)		

Total Volume (V) = 6520.0 (cu.m)

Water Supply Coefficient (K)

K: 18

OBC Part: C (Residential)


Construction Type: Building is of combustible construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2. of the OBC, including loadbearing walls, columns and arches. Noncombustible construction may be used in lieu of fire-resistance rating where permitted in Subsection 3.2.2. of the OBC.

1

Spacial Coefficients (S)

Distance		
S_1	0	25.4 (North)
S ₂	0	50 (East)
S_3	0	50 (South)
S_4	0	50 (West)

 $S_{Tot} = 1.0 + S_1 + S_2 + S_3 + S_4 =$

<u>Q =</u>		117,360	
Required Flow Rate (O	<u>BC)</u> =	2,700	L / Min
(See Table 2	=	45	L / Sec

Building Code, Part 3 Buildings	Required Minimum Water Supply Flow Rate (L/min.)
One-storey building with building area not exceeding 600m² (excluding F-1 occupancies)	1800
All other buildings	2700 (If Q ≤ 108,000L) ⁽¹⁾
	3600 (If $Q > 108,000L$ and $\leq 135,000L$) ⁽¹⁾
	4500 (If $\mathbf{Q} > 135,000L$ and $\leq 162,000L$) ⁽¹⁾
	5400 (If $\mathbf{Q} > 162,000L \text{ and } \le 190,000L$) ⁽¹⁾
	6300 (If $\mathbf{Q} > 190,000L$ and $\leq 270,000L$) ⁽¹⁾
	9000 (If Q > 270,000L) ⁽¹⁾

Date: 3/14/2023

FIRE FLOW DEMAND REQUIREMENTS

Project: 1127 Garrison Road, UNIT 2 Method: OFM-TG-03-1999 FIRE PROTECTION WATER SUPPLY GUIDELINE FOR PART 3 IN THE ONTARIO BUILDING CODE http://www.mcscs.jus.gov.on.ca/english/FireMarshal/Legislation/TechnicalGuidelinesandReports/TG-1999-03.html

Q= K x V x S_{Tot}

Formula:

- Where:
- Q = minimum supply of water in litres K = water supply coefficient (Table 1)
- V = total building volume in cubic meters
- S_{Tot} = total of spacial coefficient tables

Volume (V)

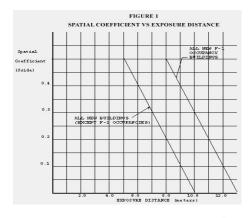
1st + 2nd + 3rd + 4th floor			
Ground Floor Area:	475.4 (sq.m)		
Height:	12 (m)		
Volume 1 (Building):	5704.8 (cu.m)		

Total Volume (V) = 5704.8 (cu.m)

Water Supply Coefficient (K)

 K:
 18

 OBC Part:
 C


:: C (Residential)

Construction Type: Building is of combustible construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2. of the OBC, including loadbearing walls, columns and arches. Noncombustible construction may be used in lieu of fire-resistance rating where permitted in Subsection 3.2.2. of the OBC.

Spacial Coefficients (S)

cience (5)		
	Distance	
S1	0	45.2 (North)
S ₂	0	21.05 (East)
S ₃	0	25.4 (South)
S_4	0	50 (West)

 $S_{Tot} = 1.0 + S_1 + S_2 + S_3 + S_4 = 1$

<u>Q =</u>		102,686	
Required Flow Rate (OB	= <u>(2</u>	2,700	L / Min
(See Table 2	=	45	L / Sec

Building Code, Part 3 Buildings	Required Minimum Water Supply Flow Rate (L/min.)
One-storey building with building area not exceeding 600m² (excluding F-1 occupancies)	1800
All other buildings	2700 (If $\mathbf{Q} \le 108,000L$) ⁽¹⁾
	3600 (If $\mathbf{Q} > 108,000L$ and $\leq 135,000L$) ⁽¹⁾
	4500 (If $Q > 135,000L$ and $\leq 162,000L$) ⁽¹⁾
	4500 (If $\mathbf{Q} > 135,000L$ and ≤ 162,000L) ⁽¹⁾ 5400 (If $\mathbf{Q} > 162,000L$ and ≤ 190,000L) ⁽¹⁾ 6300 (If $\mathbf{Q} > 190,000L$ and ≤ 270,000L) ⁽¹⁾

Date: 3/14/2023

FIRE FLOW DEMAND REQUIREMENTS

Project: 1127 Garrison Road, UNIT 2 Method: OFM-TG-03-1999 FIRE PROTECTION WATER SUPPLY GUIDELINE FOR PART 3 IN THE ONTARIO BUILDING CODE http://www.mcscs.jus.gov.on.ca/english/FireMarshal/Legislation/TechnicalGuidelinesandReports/TG-1999-03.html

Q= K x V x S_{Tot}

Formula:

- Where:
- Q = minimum supply of water in litres K = water supply coefficient (Table 1)
- V = total building volume in cubic meters

S_{Tot} = total of spacial coefficient tables

Volume (V)

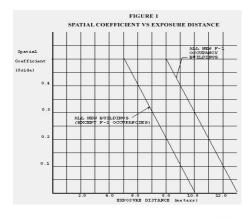
1st + 2nd + 3rd + 4th floor			
Ground Floor Area:	543.33 (sq.m)		
Height:	12 (m)		
Volume 1 (Building):	6519.96 (cu.m)		

Total Volume (V) = 6520.0 (cu.m)

Water Supply Coefficient (K)

 K:
 18

 OBC Part:
 C


: C (Residential)

Construction Type: Building is of combustible construction with fire separations and fire-resistance ratings provided in accordance with Subsection 3.2.2. of the OBC, including loadbearing walls, columns and arches. Noncombustible construction may be used in lieu of fire-resistance rating where permitted in Subsection 3.2.2. of the OBC.

Spacial Coefficients (S)

	Distance	
S ₁	0	45.2 (North)
S ₂	0	21.05 (East)
S ₃	0	25.4 (South)
S_4	0	50 (West)

 $S_{Tot} = 1.0 + S_1 + S_2 + S_3 + S_4 = 1$

<u>Q =</u>		117,360	
Required Flow Rate (OBC	<u>= (2)</u>	3,600	L / Min
(See Table 2	=	60	L / Sec

Building Code, Part 3 Buildings	Required Minimum Water Supply Flow Rate (L/min.)
One-storey building with building area not exceeding 600m² (excluding F-1 occupancies)	1800
All other buildings	2700 (If Q ≤ 108,000L) ⁽¹⁾
	3600 (If $Q > 108,000L$ and $\leq 135,000L$) ⁽¹⁾
	4500 (If $\mathbf{Q} > 135,000L$ and $\leq 162,000L$) ⁽¹⁾
	4500 (If $\mathbf{Q} > 135,000L$ and $\leq 162,000L$) ⁽¹⁾ 5400 (If $\mathbf{Q} > 162,000L$ and $\leq 190,000L$) ⁽¹⁾ 6300 (If $\mathbf{Q} > 190,000L$ and $\leq 270,000L$) ⁽¹⁾

DOMESTIC WATER USEAGE REQUIREMENTS

Project: 1127 Garrison Road, Fort Erie Method: Fixture Unit Method, Per OBC Table 7.6.3.2.A

<u>Fixtures:</u> The number of fixtures was calculated based on the Floor Plans by Organica Studio Inc. + dated Sept. 19, 2023

<u>Amount</u>	Fixture Type	<u>Fixture Units Per</u>	<u>Total</u>	
5	Public Bathroom Group	2.2	11	(Commercial Units)
33	Watercloset	2	66	
85	Private Bathroom Group	3.6	306	
29	Dishwasher	1.4	40.6	
60	Kitchen Sink	1.4	84	
60	Clothes Washer	1.4	84	
8	Hose Bib	2.5	20	
	Total:		611.6	612

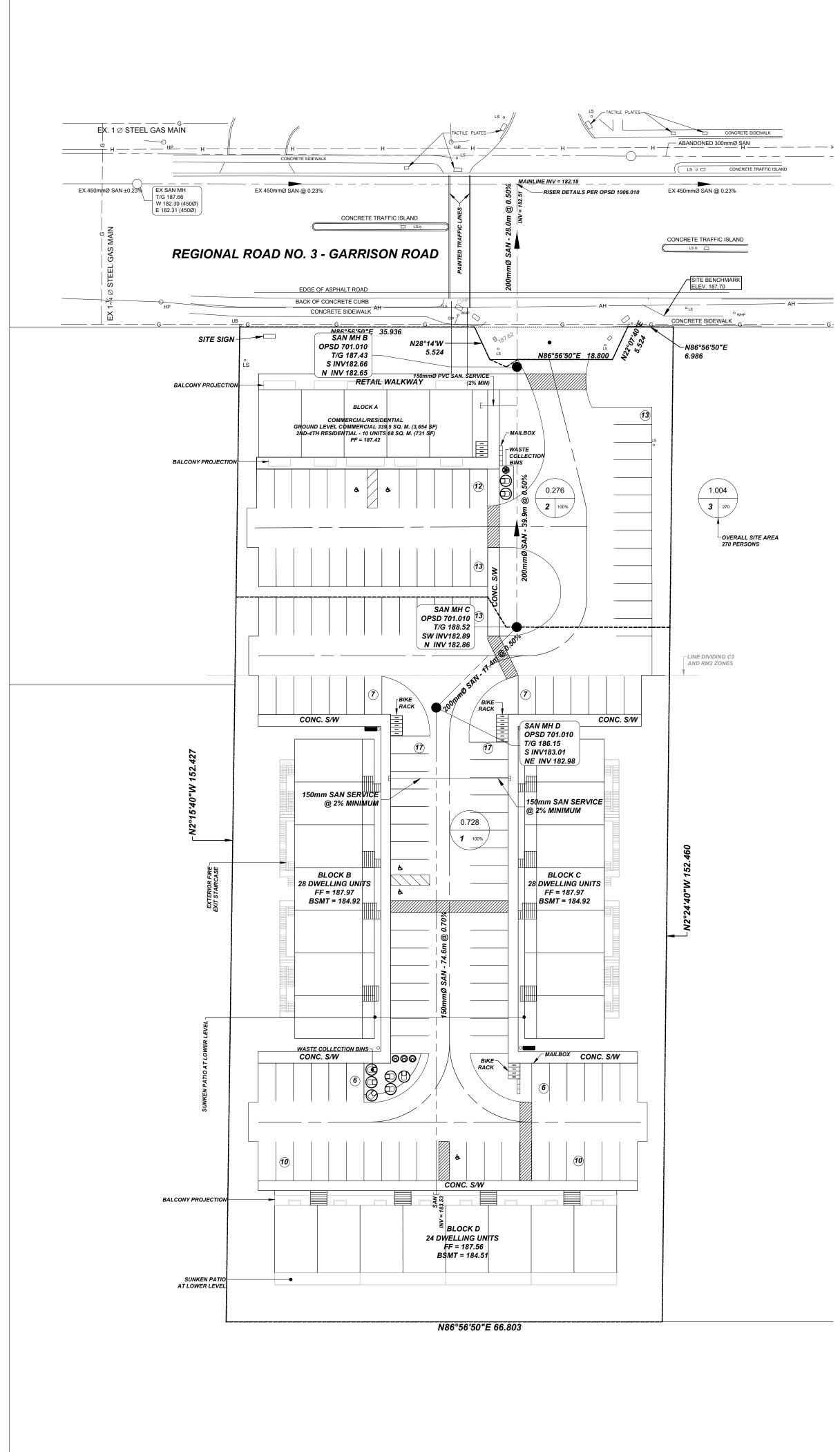
1 - Reference Table 7.6.3.2.A, Ontario Building Code

Hydraulic Load: Fixture units are then transferred to Hydaulic Load based on Ontario Building Code Table 7.4.10.5.

Column 1	Column 2	Column 3	Column 4
Fixture Units in service	Max Drainage Rate (Gal/m)		
	Col. 1	Col. 1 × 10	Col. 1 × 100
100	53	174	900
90	51	164	835
80	49	153	750
70	47	140	680
60	44	128	600
50	41	115	520
40	38	102	435
30	33	88	350
20	27	72	262
10	21	53	174

Maximum hydraulic load is estimated to be 129 Imperial Gallons / Minute

612 Fixture Units = 9.77 L/s


The estimated maximum hydraulic load for the proposed development (90 Units) is 9.77 L/s

Appendix 'C'

Sanitary Drainage Area Plan

Pages from Niagara Region Water / Wastewater Master Servicing Plan (2016)

DRAWING FILE: \\MYCLOUDPR2100\Public\Project Files\PROJECTS_Fort Erie\1127 Garrison Road, Fort Erie_CAD\1127 Garrison Rd_BASEPLAN_COPY 2023-09-20.dwg PLOTTED: Sep 21, 2023 - 2:07pm PLOTTED BY: User1

– AH ———

NOTES:

LEGEND

SAN

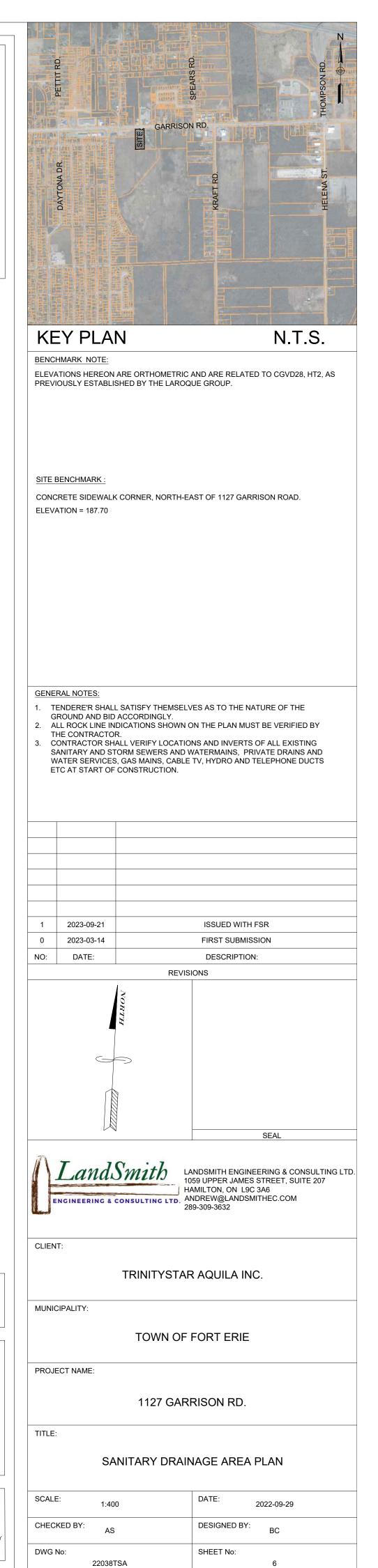
PLUG

n PLUG

HYD

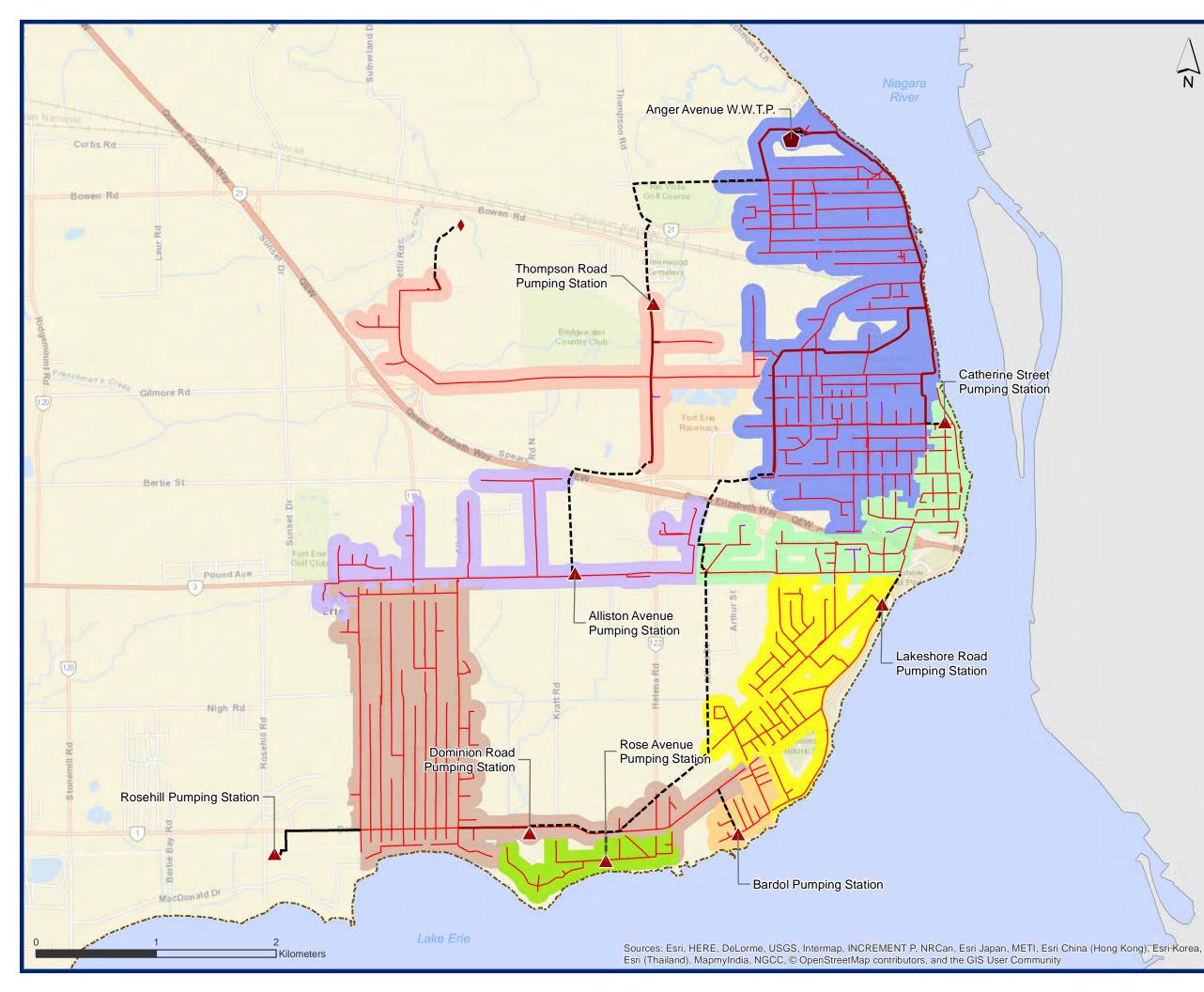
FH

0.077

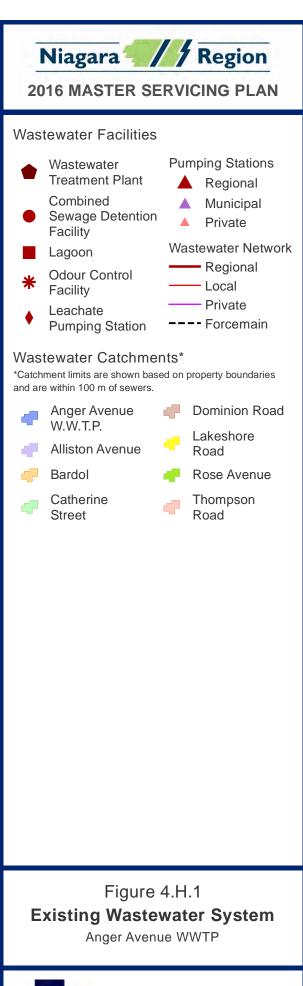

1 | 141 /

EXISTING SANITARY PROPOSED SANITARY EXISTING SANITARY MAINTENANCE HOLE PROPOSED SANITARY MAINTENANCE HOLE EXISTING PLUG PROPOSED PLUG PROPOSED FIRE HYDRANT EXISTING FIRE HYDRANT

— AREA (HECTARES)


- POPULATION DENSITY

- DRAINAGE AREA NO.



APPROVAL OF THIS DRAWING IS FOR MATERIAL ACCEPTABILITY AND COMPLIANCE WITH MUNICIPAL AND PROVINCIAL SPECIFICATIONS AND STANDARDS ONLY. APPROVAL AND INSPECTION BY THE CITY OF THE WORKS DOES NOT CERTIFY THE LINE AND GRADE OF THE WORK AND IT IS THE OWNER'S RESPONSIBILITY TO HAVE THEIR ENGINEER CERTIFY THIS ACCORDINGLY.

- NOTES re: SEPARATION DISTANCES: 1. MINIMUM HORIZONTAL SEPARATION BETWEEN WATER SERVICES / MAINS AND SEWER DRAINS AND MUNICIPAL SEWER MAINS SHALL BE 2.5M MEASURED FROM THE CLOSEST PIPE EDGE TO THE CLOSEST PIPE EDGE.
- 2. VERTICAL SEPARATION WHERE WATER SERVICE / MAIN 2. VERTICAL SEPARATION WHERE WATER SERVICE / WAIN PASSES OVER A SEWER DRAIN OR MUNICIPAL SEWER MAIN MUST BE A MINIMUM 0.25M UNLESS GREATER SEPARATION IS REQUIRED TO PROVIDE PROPER BEDDING AND STRUCTURAL SUPPORT. WATER SERVICES/MAINS PASSING UNDER SEWER DRAINS OR MUNICIPAL SEWER DRAINS MUST HAVE A SEPARATION OF 0.50M BETWEEN THE INVERT OF THE SEWER MAIN/DRAIN AND THE CROWN OF THE WATER SERVICE/MAIN.
- LOCATIONS UNDERGROUND SERVICES ARE APPROXIMATE AND MUST BE FIELD VERIFIED PRIOR TO CONSTRUCTION.
 ANY DISCREPANCIES BETWEEN SERVICE LOCATIONS AND THESE ENGINEERING DRAWINGS MUST BE BROUGHT TO THE ATTENTION OF THE PROJECT ENGINEER.
 THIS PLAN SHALL BE INTERPRETED IN CONJUNCTION WITH THE SITE PLAN DRAWING PREPARED BY CUSIMANO ARCHITECT (LATEST VERSION). ANY DISCREPANCIES MUST BE BROUGHT TO THE ENGINEER'S ATTENTION IMMEDIATELY.

June 2017 715023-WW-2-Existing System (Anger Avenue) NAD 1983 UTM Zone 17N

Table 4.	H.7

Existing Wastewater System Flows by Catchment

Catchment	Total Service Equivalent Population	Existing Average Dry Weather Flow (L/s)	Existing Design Peak Wet Weather Flow (L/s)	Existing 2-Year Flow (L/s)	Existing 5-Year Flow (L/s)
Anger Avenue Wastewater Treatment Plant (WWTP)	25,431	136.7	657.5	784.6	841.6
Anger Avenue WWTP	10,702	75.9	272.2	340.0	420.0
Thompson Road Sewage Pumping Station (SPS)	6,579	19.0	116.5	169.0	226.0
Thompson Road SPS	2,104	13.2	64.0	122.0	164.0
Alliston Avenue SPS	4,475	5.8	52.5	47.0	62.0
Catherine Street SPS	2,783	24.4	125.8	180.0	270.0
Catherine Street SPS	1,324	17.0	69.1	77.0	126.0
Lakeshore SPS	1,459	7.4	56.7	103.0	144.0
Dominion Road SPS	5,366	17.4	143.0	1107.0	1540.0
Dominion Road SPS	4,686	13.4	114.2	897.5	1248.5
Rose Avenue SPS	363	1.6	16.1	129.0	179.5
Bardol SPS	317	2.4	12.7	80.5	112.0

Note: Flow numbers may not sum due to rounding.

Table 4.H.10

Projected Peak Dry Weather Flow by Catchment

Catchment	2021 Design Peak Dry Weather Flow (L/s)	2026 Design Peak Dry Weather Flow (L/s)	2031 Design Peak Dry Weather Flow (L/s)	2036 Design Peak Dry Weather Flow (L/s)	2041 Design Peak Dry Weather Flow (L/s)
Anger Avenue Wastewater	153.5	160.4	168.8	189.5	200.0
Treatment Plant					
Alliston Avenue					
Sewage Pumping	14.2	18.3	19.8	21.3	23.4
Station (SPS)	E 0	6.6	77	0.7	0.1
Bardol SPS	5.3	6.6	7.7	8.7	9.1
Catherine Street SPS	34.5	35.2	35.8	35.9	36.2
Dominion Road SPS	29.0	34.5	38.1	40.3	41.5
Lakeshore Road SPS	15.6	18.3	20.2	21.9	22.7
Rose Avenue SPS	3.4	4.3	5.1	5.6	5.8
Thompson Road SPS	35.3	40.4	46.8	53.8	60.9
Total	290.9	318.1	342.3	377.1	399.5

The following presents an example calculation of projected peak dry weather flow.

- 2041 Peak Dry Weather Flow for Lakeshore Road Sewage Pumping Station:
- = (2014 Average Dry Weather Flow × Peaking Factor) +
- (2041 Equivalent Population 2014 Equivalent Population) × 275 L/cap/day ×
- 1 day/86400 s × Harmon Peaking Factor for Growth Population
- = $(7.41 \text{ L/s} \times 2.0) + (2,155 1,459 \text{ people}) \times 275 \text{ L/cap/day} \times 1 \text{ day/86400 s} \times 3.56$ = 22.7 L/s

Table 4.H.11

Projected Peak Wet Weather Flow by Catchment

Catchment	2021 Design Peak Wet Weather Flow (L/s)	2026 Design Peak Wet Weather Flow (L/s)	2031 Design Peak Wet Weather Flow (L/s)	2036 Design Peak Wet Weather Flow (L/s)	2041 Design Peak Wet Weather Flow (L/s)
Anger Avenue Wastewater Treatment Plant	273.9	280.7	289.1	309.9	320.3
Alliston Avenue Sewage Pumping Station (SPS)	55.1	59.2	60.7	62.3	64.3
Bardol SPS	13.1	14.4	15.6	16.5	16.9
Catherine Street SPS	69.7	70.4	70.9	71.1	71.4
Dominion Road SPS	116.5	121.9	125.5	127.7	128.9
Lakeshore Road SPS (Fort Erie)	57.5	60.2	62.1	63.8	64.6
Rose Avenue SPS	16.2	17.2	18.0	18.5	18.7
Thompson Road SPS	72.9	78.1	84.4	91.4	98.5
Total	675.0	702.1	726.4	761.2	783.6

The following presents an example calculation of projected peak wet weather flow.

- 2041 Peak Wet Weather Flow for Lakeshore Road Sewage Pumping Station:
- = 2041 Peak Dry Weather Flow + 2041 Design RDII
- = 2041 Peak Dry Weather Flow + (2041 Catchment Area × 0.286 L/s/ha)
- = 22.7 L/s + (146.4 ha × 0.286 L/s/ha)
- = 64.6 L/s

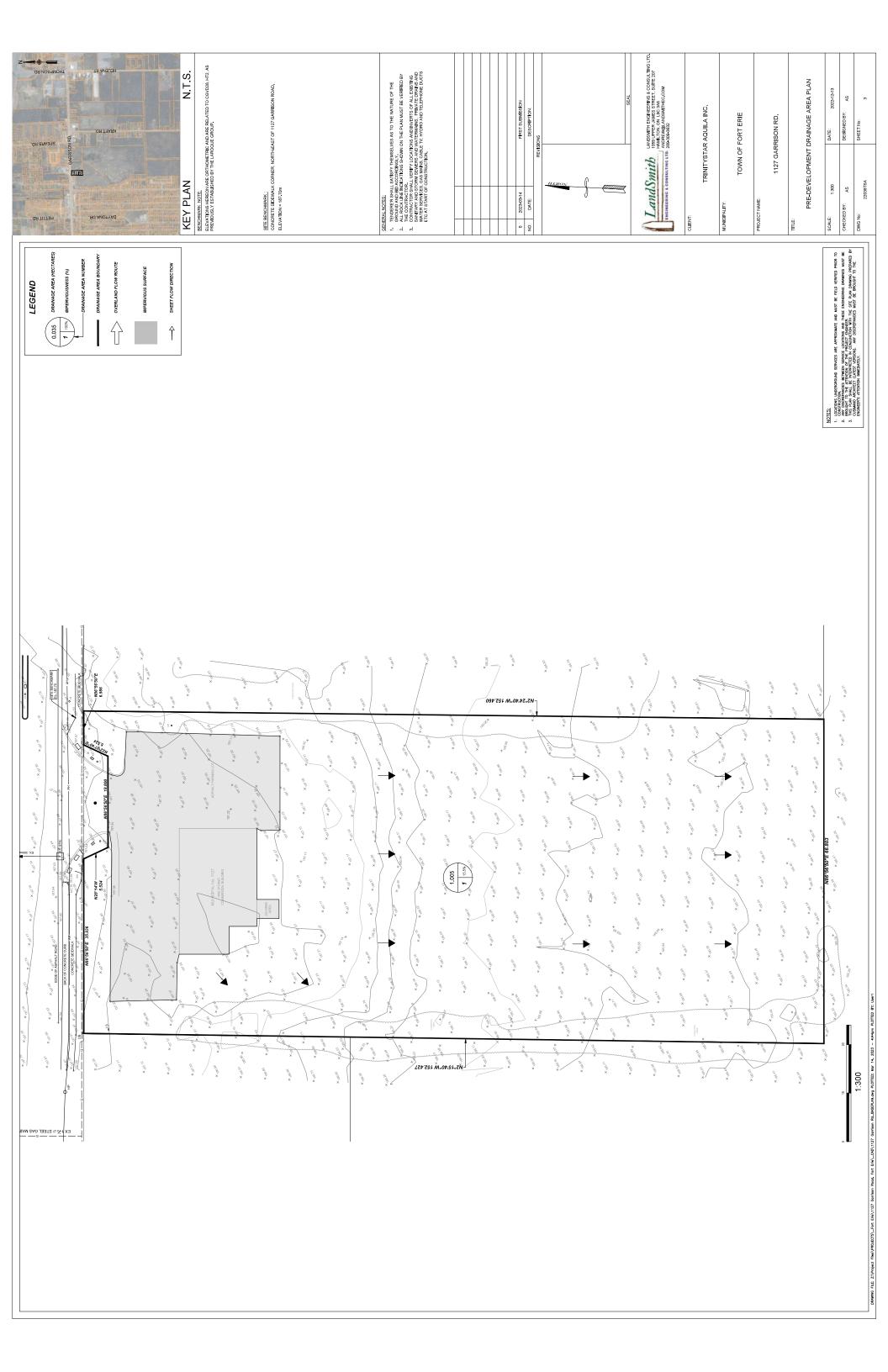
System Sewage Pumping Station Performance

Sewage Pumping Station	Contributing Catchments	Facility Operational Capacity (L/s)	Existing Design Peak Wet Weather Flow (L/s)	2041 Design Peak Wet Weather Flow (L/s)	2041 Surplus/ Deficit (L/s)
Thompson Road Sewage Pumping Station (SPS)	Thompson Road SPS (Including Sub Catchments) Alliston Avenue SPS	298.0	116.5	158.6	139.4
Alliston Avenue SPS	Alliston Avenue SPS	43.0	52.5	64.3	-21.3
Catherine Street SPS	Catherine Street SPS (Including Sub Catchments) Lakeshore Road SPS	117.0	125.8	135.3	-18.3
Lakeshore Road SPS	Lakeshore Road SPS	63.0	56.7	64.6	-1.6
Dominion Road SPS	Dominion Road SPS (Including Sub Catchments) Rose Avenue SPS Bardol SPS	215.0	143.0	162.7	52.3
Rose Avenue SPS	Rose Avenue SPS	48.0	16.1	18.7	29.3
Bardol SPS	Bardol SPS	45.0	12.7	16.9	28.1

The following sewage pumping stations have projected pumping deficits:

- Alliston Avenue Sewage Pumping Station
- Catherine Street Sewage Pumping Station
- Lakeshore Road Sewage Pumping Station

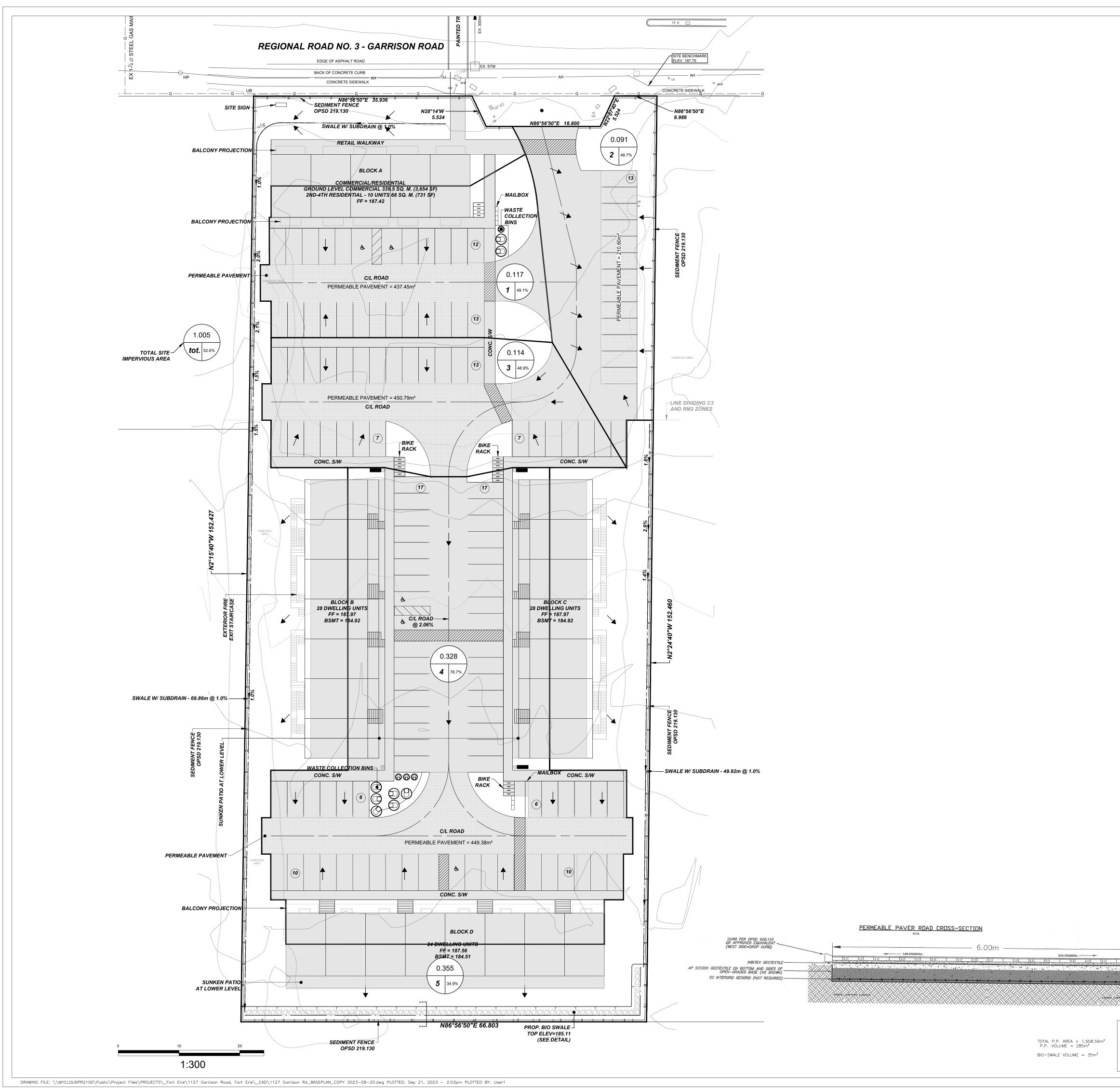
Table 4.H.14

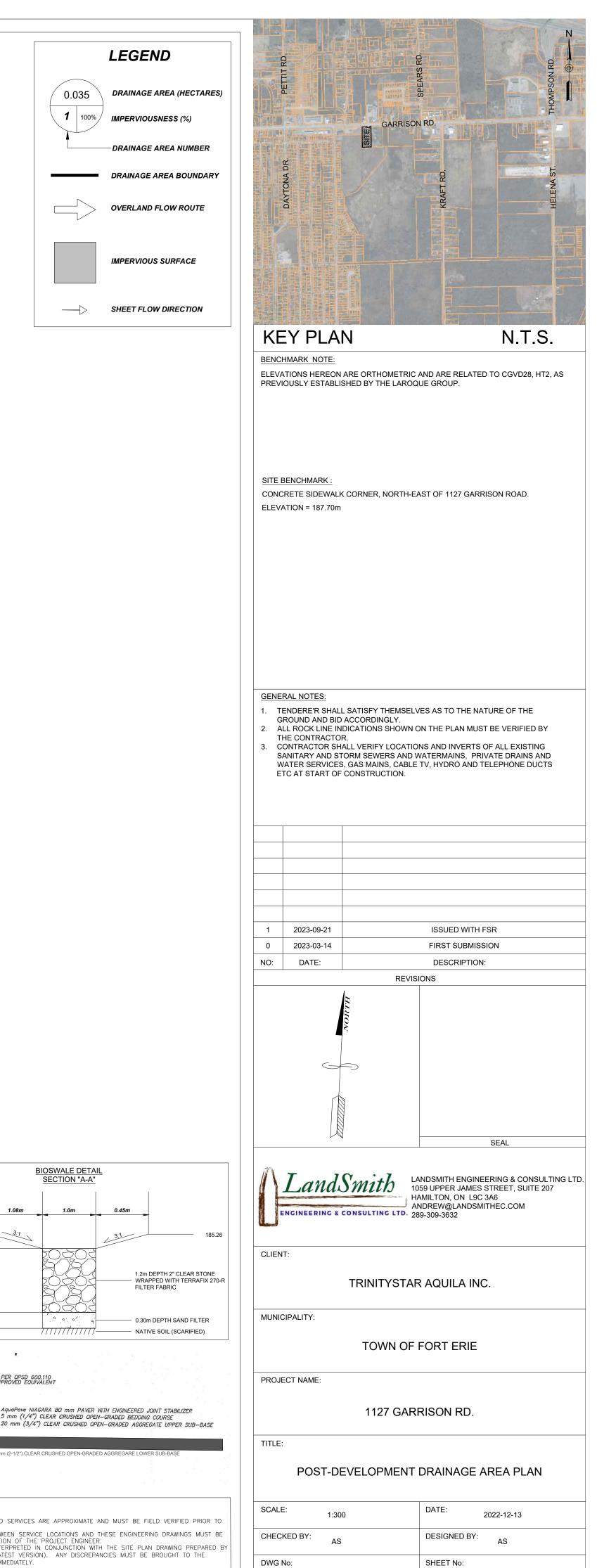

Summary of Anger Avenue Wastewater Treatment Plant Capital Program

Master Plan ID	Name	Description	Size / Capacity	Year in Service	Municipality	Class EA Schedule	Class EA Status	Project Type	Total Component Estimated Cost
WW-FM-001	Upgrade Catherine Street Sewage Pumping Station (SPS) Forcemain	Upgrade Catherine Street SPS Forcemain in Fort Erie	300 mm	2032-2041	Fort Erie	A+	Satisfied	Forcemain	\$467,000
WW-II-001	Wet weather reduction in East Fort Erie	Wet weather reduction in East Fort Erie	30 L/s reduction	2022-2031	Fort Erie	N/A	Dependent on outcome of wet weather flow study	Wet Weather Reduction	\$4,500,000
WW-SPS-001	Alliston Avenue SPS Pump Replacement - Anger Avenue	Increase station capacity from 43 L/s to 129 L/s.	129 L/s	2022-2031	Fort Erie	A+	Satisfied	Pumping	\$989,000
WW-SPS-002	Catherine Street SPS Expansion - Anger Avenue	Increase station capacity from 117 L/s to 140 L/s	140 L/s	2032-2041	Fort Erie	A+	Satisfied	Pumping	\$2,945,000
WW-SPS-003	Lakeshore Road SPS Upgrade - Anger Avenue	Increase station capacity from 63 L/s to 70 L/s	70 L/s	2022-2031	Fort Erie	A+	Satisfied	Pumping	\$2,618,000
Total									\$11,519,000

Appendix 'D'

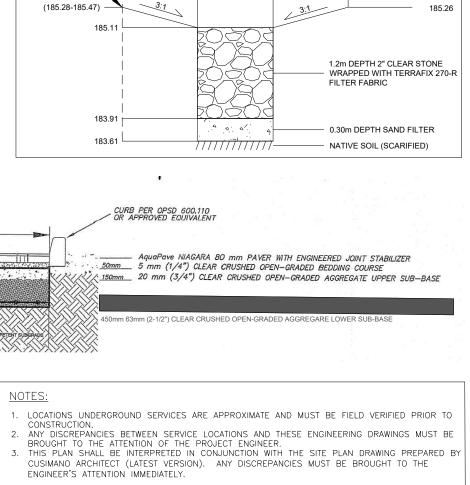
Pre-Development Drainage Area Plan NPCA Figure re: Drainage Context Post-Development Drainage Area Plan Permeable Paver Fact Sheet Bio-Swale Fact Sheet





1447 4150 NPCA Watershed Explorer 1127 Garrison Road 1134 Show search results for the	1160 1125 1122 X Q 1120 F 1120 F 1110 Y 11113 11116 Y 1112 11116 1122 1122 1115 11120 F 1122 1112 11116 Y 1122 1112 1112 1112 1112 1112 1112 111	
0 1414 1097 1370 1121 1111 1414 1097 1370 1103 1097		122 14 102 102 1039 1053 1061 1037 1021 93 93 93 93 93 93 93 93 93 93 93 93 93
Pound Ave 11 1451 1441 1427 1415 1393 1383 1372 1356 152 1452 1443 1403 1403 1403 1403 1403 1403	1038 1071 1326 1264 1218 12021188 Garrison Rd Garrison Rd Garrison Rd	1153 1050 1050 1050 1050 1050 1050 1050
ARRISON ROAD Garrison Rd Garrison Rd 1451 1429 1407 1389 1371 1351 1451 1429 1407 1389 1371 1351 1451 1429 1407 1389 1371 1351 152 1445 1029 1415 1400 1338 1380 1360 1029	3 Garrison Rd Garrison Rd Garrison Rd 1321 1267 1245 1243 1233 1201 1167 1030 1306 1295 1283 1264 1250 1230 1029 1023	1127 1107 1135 1043
Orchard Ave Orchard Ave Orchard Ave 1463 1441 1007 1415 1401 1333 1373 1359 1945 6 995 995 993 999 999	AVENUE Orchard Ave 1012 1325 1307 1235 1007 1239 1221 1005 992 995 994 999 992 991 993 992 939 991 991 991 991 993	SITE
987 983 987 988 975 987 983 987 988 975 971 970 980 975 970 970 965 970 967 965 964 961 962 957 96 965 964 961 962 957 96 955 954 955 954 957	976 976 <td></td>	
935 935 943 943 943 943 943 933 <td>946 951 944 945 944 943 943 936 943 936 937 936 935 934 935 930 935 930 929 928 928 928 928 924 925 924 921 920 919 919 928</td> <td></td>	946 951 944 945 944 943 943 936 943 936 937 936 935 934 935 930 935 930 929 928 928 928 928 924 925 924 921 920 919 919 928	
AVENUE 8 907 Evelyn Ave 903 907 603 905 901 893 893 893 893 893 893 893	Evelyn Ave 2 E10 E03 904 905 906 906 905 904 E37 E36 E37 E36 E37 E36 E37 E36 E37 E36 E37 E38 E39 E39 E39 E39 E38 E38	885
·: -78.951 42.908 Degrees 887 888 839 100m 880 879 880 877	836 837 837 833 832 836 831 832 831 832 876 875 833 872 87	

1127 Garrison Road, NPCA Watershed Explorer, Storm Drainage Context



22038TSA

4

P/L

MATCH GRADE --AT P/L (VARIES)

"			MIDUSS Output				>"
"			MIDUSS version		Ve	ersion 2.25	rev. 473"
"			MIDUSS created			Februai	ry 7, 2010"
"		10	Units used:				ie METRIC"
"			Job folder:	Z:\Pro	ject Files	PROJECTS_B	Fort Erie\"
"			112	27 Garrison H	Road, Fort B	Erie\SWM Cal	lculations"
"			Output filename:			Pre_	_5year.out"
"			Licensee name:			And	drew Smith"
"			Company	LandSmit	h Engineeri	ing & Consul	lting Ltd."
"			Date & Time last us	sed:	2023	8-03-14 at 1	L:57:15 PM"
"	31	TIT	ME PARAMETERS"				
"		5.000	Time Step"				
"	1	.80.000	Max. Storm length"				
"	15	500.000	Max. Hydrograph"				
"	32		ORM Chicago storm"				
"		1	Chicago storm"				
"	6	528.050	Coefficient A"				
"			Constant B"				
"		0.796	Exponent C"				
"		0.500	Fraction R"				
"	1	80.000	Duration"				
"		1.000	Time step multiplie				
"			ximum intensity	66.94		•	
"		-	tal depth	29.33		c 1 1 1	
	2.2	6		η extension ι	ised in this	s Ille"	
	33		ICHMENT 101"				
		1	Triangular SCS"				
		1	Equal length" SCS method"				
		101	No description"				
		15.000	% Impervious"				
"		1.005	Total Area"				
"		80.000	Flow length"				
"		2.000	Overland Slope"				
"		0.854	Pervious Area"				
"		80.000	Pervious length"				
"		2.000	Pervious slope"				
"		0.151	Impervious Area"				
"		80.000	Impervious length"				
"		2.000	Impervious slope"				
"		0.250	Pervious Manning 'r	ı '			
"		75.000	Pervious SCS Curve	No."			
"		0.141	Pervious Runoff coe	efficient"			
"		0.100	Pervious Ia/S coeff	ficient"			
"		8.467	Pervious Initial at	ostraction"			
"		0.015	Impervious Manning				
"		98.000	Impervious SCS Curv				
"		0.828	Impervious Runoff of				
"		0.100	Impervious Ia/S coe				
"		0.518	Impervious Initial			, .	
		0-1	0.026 0.00		0.000 0		
			tchment 101	Pervious	-	Total Area	
			rface Area	0.854	0.151	1.005	hectare"
			ne of concentration ne to Centroid	50.163 177.653	4.801 106.056	27.047 141.168	minutes" minutes"
			infall depth	29.334	29.334	29.334	minutes" mm"
			infall volume	29.334	44.22	29.334 294.81	c.m"
"			infall losses	25.209	5.046	22.185	mm"
"			noff depth	4.125	24.288	7.149	mm"
"			noff volume	35.24	36.61	71.85	c.m"
"			noff coefficient	0.141	0.828	0.244	"
"			kimum flow	0.006	0.025	0.026	c.m/sec"
"	40		DROGRAPH Add Runoff				
"		4	Add Runoff "				
"			0.026 0.02	26 0.000	0.000"		

							المطا
			MIDUSS Output				>"
			MIDUSS version		V	ersion 2.25	
			MIDUSS created			Februa:	ry 7, 2010"
"		10	Units used:				ie METRIC"
"			Job folder:		-	\PROJECTS_	
"				27 Garrison 1	Road, Fort		
"			Output filename:			Pre	-5year.out"
"			Licensee name:			And	drew Smith"
"			Company	LandSmit	th Engineer	ing & Consu	lting Ltd."
"			Date & Time last us	sed:	202	3-03-14 at 2	2:11:14 PM"
"	31	TI	IME PARAMETERS"				
"		5.000	Time Step"				
"		180.000	Max. Storm length"				
"		1500.000	Max. Hydrograph"				
"	32	SI	TORM Chicago storm"				
"		1	Chicago storm"				
"		747.930	Coefficient A"				
"		6.800	Constant B"				
"		0.768	Exponent C"				
"		0.500	Fraction R"				
"		180.000	Duration"				
"		1.000	Time step multiplie				
"					69 mm/hr		
"			aximum intensity	85.6			
			otal depth	40.4			
	2.2	6		n extension 1	used in thi	s ille"	
	33		ATCHMENT 101"				
		1	Triangular SCS"				
		1	Equal length"				
"		1	SCS method"				
"		101	No description"				
"		15.000	% Impervious"				
"		1.005	Total Area"				
"		80.000	Flow length"				
"		2.000	Overland Slope"				
"		0.854	Pervious Area"				
"		80.000	Pervious length"				
"		2.000	Pervious slope"				
"		0.151	Impervious Area"				
"		80.000	Impervious length"				
"		2.000	Impervious slope"				
"		0.250	Pervious Manning 'n	1 ' ''			
"		75.000	Pervious SCS Curve	No."			
"		0.216	Pervious Runoff coe	efficient"			
"		0.100	Pervious Ia/S coeff	ficient"			
"		8.467	Pervious Initial ab	straction"			
"		0.015	Impervious Manning				
"		98.000	Impervious SCS Curv				
"		0.864	Impervious Runoff c				
"		0.100	Impervious Ia/S coe				
"		0.518	Impervious Initial		"		
"		0.010	0.036 0.00			c.m/sec"	
"		Ca	atchment 101	Pervious		Total Area	п
"			irface Area	0.854	0.151	1.005	hectare"
"					4.310		
			me of concentration			24.168	minutes"
			me to Centroid	160.853	104.523	137.576	minutes"
			ainfall depth	40.417	40.417	40.417	mm"
			ainfall volume	345.26	60.93	406.19	c.m"
			ainfall losses	31.671	5.511	27.747	mm "
			noff depth	8.747	34.906	12.670	mm"
			noff volume	74.72	52.62	127.34	c.m"
			noff coefficient	0.216	0.864	0.313	" ("
"			aximum flow	0.016	0.034	0.036	c.m/sec"
"	40		DROGRAPH Add Runoff				
"		4	Add Runoff "				
"			0.036 0.03	36 0.000	0.000"		

"			MIDUSS Output					>"
"			MIDUSS version			V	ersion 2.25	rev. 473"
"			MIDUSS created				Februar	ry 7, 2010"
"		10	Units used:					ie METRIC"
"			Job folder:		Z:\Pro	ject Files	\PROJECTS_H	Fort Erie\"
"			1	127 Ga	arrison F	Road, Fort	Erie\SWM Ca	lculations"
"			Output filename:				Pre-10	00year.out"
"			Licensee name:				And	drew Smith"
"			Company		LandSmit	h Engineer	ing & Consu	lting Ltd."
"			Date & Time last	used:		202	3-03-14 at 2	2:12:57 PM"
"	31	TI	ME PARAMETERS"					
"		5.000	Time Step"					
"		180.000	Max. Storm length	"				
"		1500.000	Max. Hydrograph"					
"	32	ST	ORM Chicago storm"					
"		1	Chicago storm"					
"		1083.550	Coefficient A"					
"			Constant B"					
"		0.735	Exponent C"					
"		0.500	Fraction R"					
"		180.000	Duration"					
"		1.000	Time step multipl	ier"				
"			ximum intensity		137.31		"	
"		-	tal depth		69.63		<u>.</u>	
	2.2	6		pn exi	tension t	used in thi	s Ille"	
	33		TCHMENT 101"					
		1	Triangular SCS"					
		1	Equal length" SCS method"					
		101	No description"					
		15.000	% Impervious"					
		1.005	Total Area"					
"		80.000	Flow length"					
"		2.000	Overland Slope"					
"		0.854	Pervious Area"					
"		80.000	Pervious length"					
"		2.000	Pervious slope"					
"		0.151	Impervious Area"					
"		80.000	Impervious length	"				
"		2.000	Impervious slope"					
"		0.250	Pervious Manning	'n'"				
"		75.000	Pervious SCS Curv	e No.	n –			
"		0.368	Pervious Runoff c	oeffi	cient"			
"		0.100	Pervious Ia/S coe	fficie	ent"			
"		8.467	Pervious Initial	abstra	action"			
"		0.015	Impervious Mannin					
"		98.000	Impervious SCS Cu					
"		0.900	Impervious Runoff					
"		0.100	Impervious Ia/S c					
"		0.518	Impervious Initia				/ 	
		C .			0.000	0.000		
			tchment 101		rvious	-	Total Area	
			rface Area		854	0.151	1.005	hectare"
			me of concentratio me to Centroid		.692	3.539	19.011	minutes"
			infall depth		2.989 .634	101.881 69.634	130.592 69.634	minutes" mm"
			infall volume		.034 4.85	104.97	699.82	c.m"
"			infall losses		.016	6.953	38.457	mm"
"			noff depth		.618	62.681	31.177	mm"
"			noff volume		8.84	94.49	313.33	c.m"
"			noff coefficient		368	0.900	0.448	"
"			ximum flow		064	0.057	0.078	c.m/sec"
"	40		DROGRAPH Add Runof					
"		4	Add Runoff "					
"			0.078 0.	078	0.000	0.000"		

"			MIDUSS Output				>"
"			MIDUSS version		Ve	ersion 2.25	rev. 473"
"			MIDUSS created			Februa	ry 7, 2010"
"		10	Units used:				ie METRIC"
"			Job folder:	Z:\Pr	oject Files	\PROJECTS_	Fort Erie\"
"				127 Garrison	Road, Fort 1		
"			Output filename:			-	_fixed.out"
"			Licensee name:	- 14			drew Smith"
			Company		th Engineer	-	-
	2.1		Date & Time last	used:	202.	3-03-14 at :	2:54:54 PM"
	31		ME PARAMETERS"				
		5.000 180.000	Time Step" Max. Storm length				
"		1500.000	Max. Hydrograph"	L			
"	32		ORM Chicago storm"				
"	52	1	Chicago storm"				
"		628.050	Coefficient A"				
"			Constant B"				
"		0.796	Exponent C"				
"		0.500	Fraction R"				
"		180.000	Duration"				
"		1.000	Time step multipl	ier"			
"		Ma	ximum intensity	66.9	943 mm/hr	"	
"		To	tal depth	29.3	334 mm"		
"		6	002hyd Hydrogra	ph extension	used in this	s file"	
"	33	CA	TCHMENT 101"				
"		1	Triangular SCS"				
"		1	Equal length"				
"		1	SCS method"				
"		101	No description"				
		70.000	% Impervious"				
		1.005	Total Area"				
		80.000 1.000	Flow length" Overland Slene"				
		0.302	Overland Slope" Pervious Area"				
		80.000	Pervious length"				
		1.000	Pervious slope"				
"		0.703	Impervious Area"				
"		80.000	Impervious length	TI III III III III III III III III III			
"		1.000	Impervious slope"				
"		0.250	Pervious Manning				
"		75.000	Pervious SCS Curv	e No."			
"		0.141	Pervious Runoff c	oefficient"			
"		0.100	Pervious Ia/S coe	fficient"			
"		8.467	Pervious Initial	abstraction"			
"		0.015	Impervious Mannin	ıg 'n'"			
"		98.000	Impervious SCS Cu				
"		0.828	Impervious Runoff		1		
"		0.100	Impervious Ia/S c				
"		0.518	Impervious Initia				
		0.5		000 0.000		c.m/sec"	"
			itchment 101 Irface Area	Pervious 0.302	0.703	Total Area 1.005	hectare"
			me of concentratic		5.910	9.701	minutes"
"			me to Centroid	192.168	107.539	113.283	minutes"
"			infall depth	29.334	29.334	29.334	mm"
"			infall volume	88.44	206.37	294.81	c.m"
"			infall losses	25.208	5.049	11.097	mm"
"			noff depth	4.126	24.285	18.237	mm"
"			noff volume	12.44	170.84	183.28	c.m"
"			noff coefficient	0.141	0.828	0.622	п
"		Ma	ximum flow	0.002	0.112	0.112	c.m/sec"
"	40	HY	DROGRAPH Add Runof	f "			
"		4	Add Runoff "				
"				112 0.000	0.000"		
	54		ND DESIGN"				
"		0.112	Current peak flow				
"		0.078	Target outflow	c.m/sec"			
"		183.3	Hydrograph volume				
~		11.	Number of stages"				

Engineering & CONSULTING LTD.

"	0.000	Minimum	water level	l metre"		
"	1.500	Maximum	water level	l metre"		
TI I	0.000	Starting	water leve	el metre	n	
"	0	Keep Des	ign Data: 1	l = True; 0	= False"	
TI I		Level	Discharge	Volume"		
TI I		0.000	0.000	0.000"		
TI I		0.1500	1.00E-07	33.000"		
"		0.3000	1.00E-07	66.000"		
"		0.4500	1.00E-07	99.000 "		
"		0.6000	0.01027	132.000"		
n		0.7500	0.03866	165.000"		
TI I		0.9000	0.05381	198.000"		
TI I		1.050	0.06555	231.000"		
TI I		1.200	0.07549	264.000"		
"		1.350	0.08426	297.000"		
"		1.500	0.09220	330.000"		
(NOTE	RATING CUP	RVE DOES N	OT REFLECT	SITE DESIG	N, ADDED FOR VOLUME ESTIMATES	ONLY)
TI I	1.	ORIFICES	"			
TI I		Orifice	Orifice	Orifice N	umber of"	
TI I		invert	coefficie	diameter	orifices"	
TI I		0.450	0.630	0.2100	1.000"	
"	P€	ak outflo	W	Ο.	011 c.m/sec"	
"	Ma	ximum lev	el	Ο.	604 metre"	
"	Ma	ximum sto	rage	132.	983 c.m"	
"		entroidal	-	3.	201 hours"	
"		0.112	0.112		0.000 c.m/sec"	

ENCINEERING & CONSULTING LTD.

"							
			MIDUSS Output MIDUSS version			ersion 2.25	
			MIDUSS created		V		ry 7, 2010"
		10	Units used:			rebrud	ie METRIC"
"		10	Job folder:	Z:\Pr	oject Files	PROJECTS	
"				127 Garrison			
"			Output filename:				_fixed.out"
"			Licensee name:			-	drew Smith"
"			Company	LandSmi	th Engineer.		
"			Date & Time last u		-	3-03-14 at	-
"	31	TI	IME PARAMETERS"				
"		5.000	Time Step"				
"		180.000	Max. Storm length'	1			
"		1500.000	Max. Hydrograph"				
"	32		ORM Chicago storm"				
"		1	Chicago storm"				
"		747.930	Coefficient A"				
		6.800	Constant B"				
		0.768	Exponent C"				
		0.500 180.000	Fraction R" Duration"				
"		1.000	Time step multipli	er"			
"			aximum intensity	85.6	69 mm/hr	"	
"			otal depth	40.4			
"		6	-	oh extension		s file"	
"	33	CA	ATCHMENT 101"				
"		1	Triangular SCS"				
"		1	Equal length"				
"		1	SCS method"				
"		101	No description"				
"		70.000	% Impervious"				
"		1.005	Total Area"				
		80.000	Flow length"				
		1.000	Overland Slope" Pervious Area"				
"		0.302 80.000	Pervious length"				
"		1.000	Pervious slope"				
"		0.703	Impervious Area"				
"		80.000	Impervious length'	r			
"		1.000	Impervious slope"				
"		0.250	Pervious Manning '	'n'"			
"		75.000	Pervious SCS Curve	e No."			
"		0.217	Pervious Runoff co				
"		0.100	Pervious Ia/S coef				
"		8.467	Pervious Initial a				
"		0.015	Impervious Manning	-			
"		98.000	Impervious SCS Cur				
		0.871	Impervious Runoff Impervious Ia/S co				
		0.100 0.518	Impervious Initial		"		
"		0.510	-	0.000		c.m/sec"	
"		Ca	atchment 101	Pervious		Total Area	п
"			irface Area	0.302	0.703	1.005	hectare"
"			me of concentration		5.306	9.318	minutes"
"		Ti	lme to Centroid	171.845	105.859	112.213	minutes"
"		Ra	ainfall depth	40.417	40.417	40.417	mm"
"			ainfall volume	121.86	284.33	406.19	c.m"
"			ainfall losses	31.666	5.213	13.149	mm"
"			noff depth	8.751	35.204	27.268	mm"
"			noff volume	26.38	247.66	274.04	c.m"
"			noff coefficient	0.217	0.871	0.675	" / "
	4.0		aximum flow	0.005	0.154	0.154	c.m/sec"
"	40	H) 4	DROGRAPH Add Runoff				
		4	Add Runoff " 0.154 0.1	154 0.000	0.000"		
"	54	DC	O.154 O.1 DND DESIGN"		0.000"		
"	57	0.154	Current peak flow	c.m/sec"			
"		0.078	Target outflow	c.m/sec"			
"		274.0	Hydrograph volume	c.m"			

LandSmith

```
...
             11. Number of stages"
           0.000 Minimum water level
1.500 Maximum water level
                                                   metre"
"
"
           1.500Maximum water levelmetre"0.000Starting water levelmetre"
"
"
                0 Keep Design Data: 1 = True; 0 = False"
                        Level Discharge Volume"
0.000 0.000 0.000"
"
"
"
                                                 33.000"
                        0.1500 1.00E-07
                        0.3000 1.00E-07
0.4500 1.00E-07
                                                66.000"
99.000"
"
"
                        0.6000 0.01027 132.000"
...
                         0.7500 0.03866 165.000"
0.9000 0.05381 198.000"
1.050 0.06555 231.000"
"
                        0.7500
"
                        0.9000
...
...
                         1.200 0.07549 264.000"
                                                297.000"
330.000"
"
                         1.350
                                    0.08426
                                   0.09220
...
                         1.500
(NOTE RATING CURVE DOES NOT REFLECT SITE DESIGN, ADDED FOR VOLUME ESTIMATES ONLY)
"
               1. ORIFICES"
"
                       Orifice Orifice Orifice Number of"
"
                        invert coefficie diameter orifices"
...
                         0.450 0.630 0.2100 1.000"
                                                          0.036 c.m/sec"
"
                  Peak outflow
"
                  Maximum level
                                                           0.736
                                                                      metre"
c.m"

        Maximum storage
        162.017
        c.m"

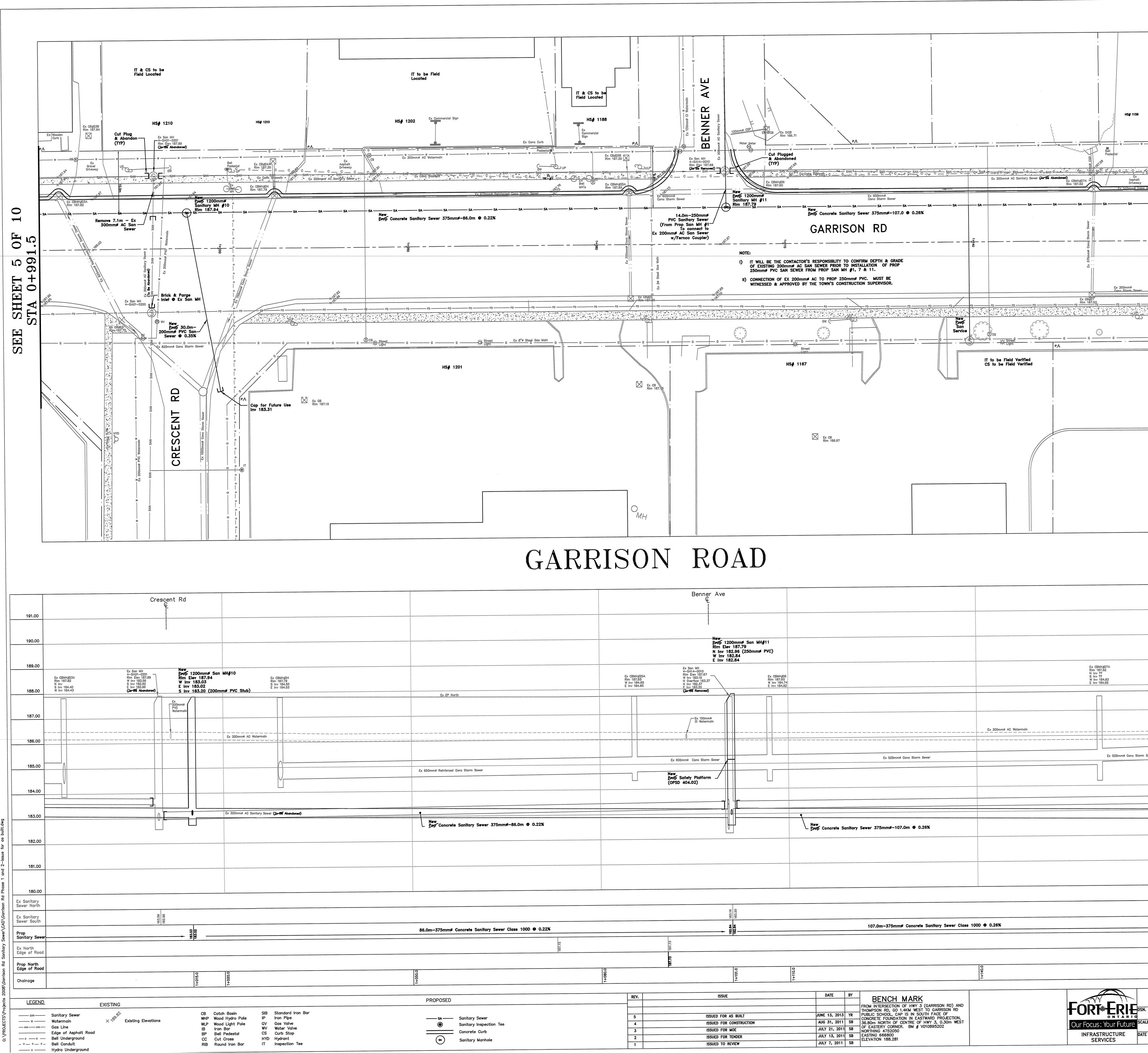
        Centroidal lag
        2.791
        hours"

        0.154
        0.154
        0.036
        0.000 c.m/sec"

...
...
```

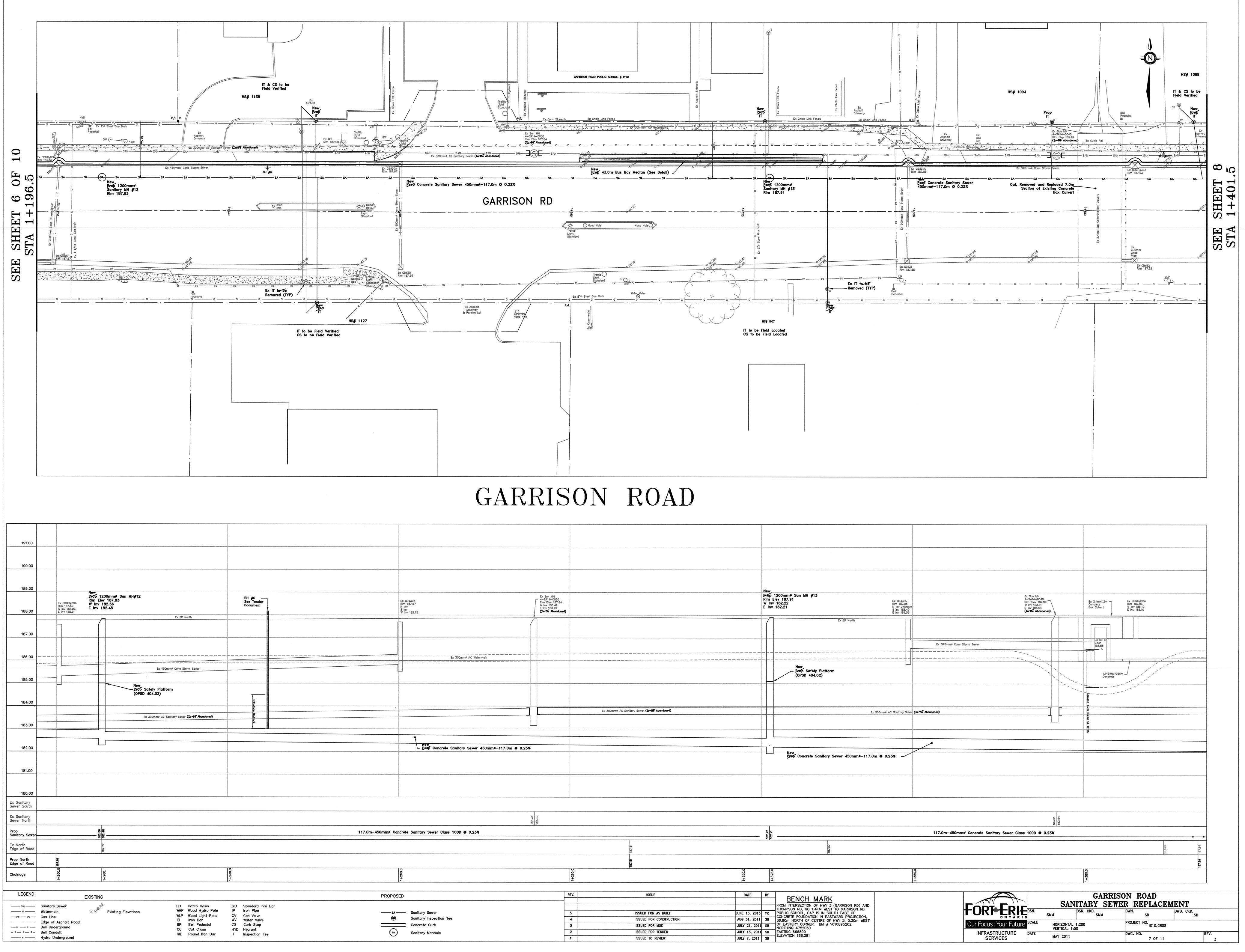
ENCINEERING & CONSULTING LTD.

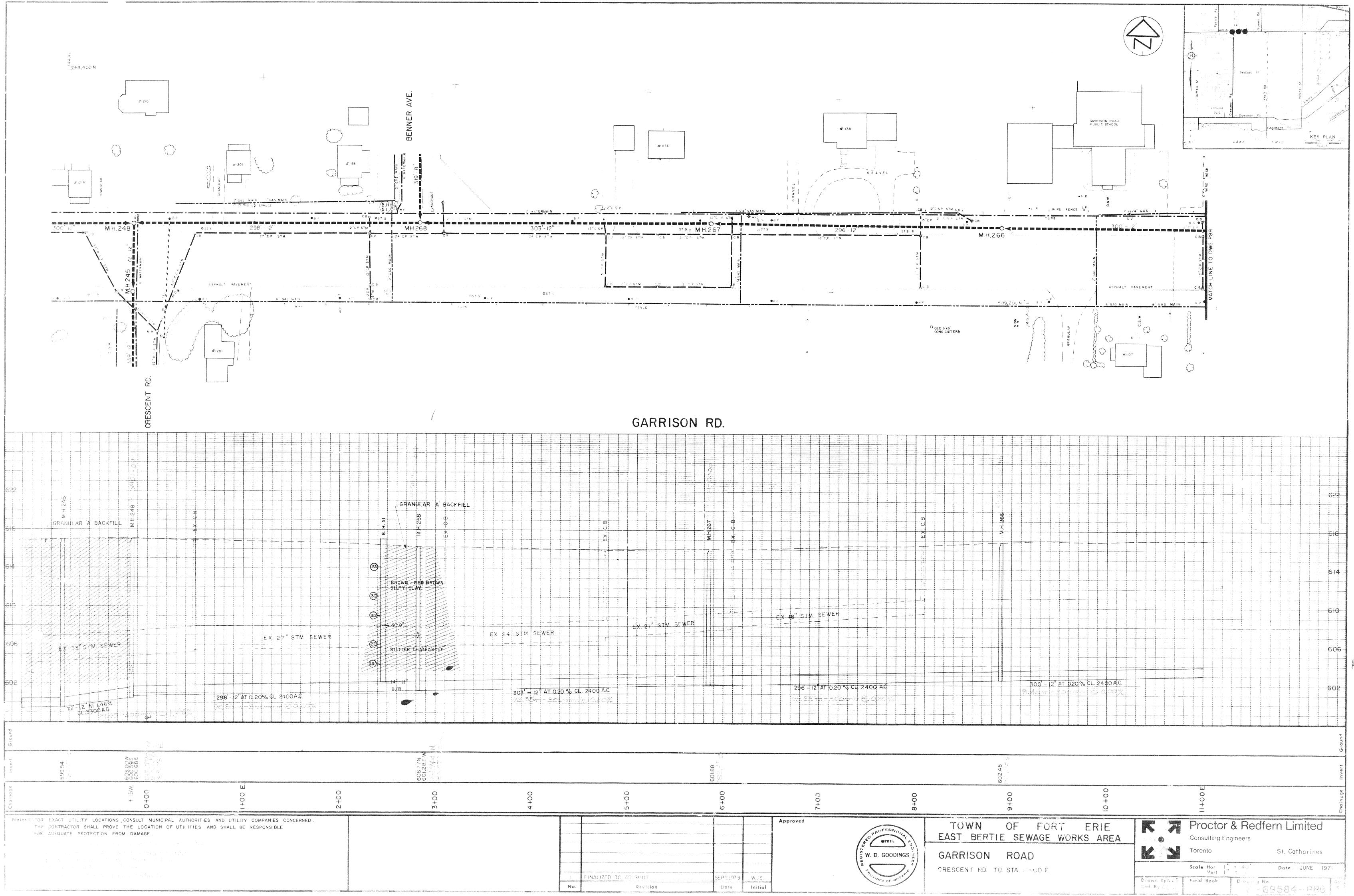
			MIDUSS Output						\"
"			MIDUSS version					ersion 2.25	
"			MIDUSS created						ry 7, 2010"
"		10	Units used:						ie METRIC"
"			Job folder:		Z:\Pro	oject	Files	PROJECTS_B	Fort Erie\"
"			1	127 Gar	rison F	Road,	Fort E	lrie∖SWM Cal	Lculations"
"			Output filename:				Ρc	ost_100year_	_fixed.out"
"			Licensee name:						drew Smith"
"			Company		andSmit	ch Eng		ng & Consul	-
"	0.1		Date & Time last	used:			2023	3-03-14 at 2	2:45:44 PM"
	31		ME PARAMETERS"						
		5.000 180.000	Time Step" Max. Storm length						
"		1500.000	Max. Hydrograph"						
"	32		CORM Chicago storm"						
"	01	1	Chicago storm"						
"		1083.550	Coefficient A"						
"		6.618	Constant B"						
"		0.735	Exponent C"						
"		0.500	Fraction R"						
"		180.000	Duration"						
"		1.000	Time step multipl	ier"					
			ximum intensity		137.31		mm/hr'		
		6	otal depth 005hyd Hydrogra	ph ovto	69.63		mm"	filo"	
"	33		005hyd Hydrogra ATCHMENT 101"	pii exte	IISTOIL (iseu i		, III6	
"	55	1	Triangular SCS"						
"		1	Equal length"						
"		1	SCS method"						
"		101	No description"						
"		70.000	% Impervious"						
"		1.005	Total Area"						
"		80.000	Flow length"						
"		1.000	Overland Slope"						
		0.302	Pervious Area"						
"		80.000 1.000	Pervious length" Pervious slope"						
"		0.703	Impervious Area"						
"		80.000	Impervious length	"					
"		1.000	Impervious slope"						
"		0.250	Pervious Manning	'n'"					
"		75.000	Pervious SCS Curv	e No."					
"		0.368	Pervious Runoff c						
"		0.100	Pervious Ia/S coe						
"		8.467	Pervious Initial		tion"				
		0.015	Impervious Mannin Impervious SCS Cu	-	"				
"		98.000 0.914	Impervious SCS Cu Impervious Runoff						
"		0.100	Impervious Ia/S c						
"		0.518	Impervious Initia			•			
"			-	000	0.000		.000 c	c.m/sec"	
"		Ca	tchment 101	Perv	ious	Imper	rvious	Total Area	"
"		Su	irface Area	0.30	2	0.703	3	1.005	hectare"
"			me of concentratio.			4.357		8.374	minutes"
			me to Centroid	150.		102.9		109.981	minutes"
"			infall depth	69.6		69.63		69.634	mm"
			ainfall volume Ainfall losses	209.		489.8		699.82 17 414	c.m" mm"
			inniall losses noff depth	43.9 25.6		6.021 63.61		17.414 52.220	mm"
"			noff volume	77.2		447.5		52.220	c.m"
"			noff coefficient	0.36		0.914		0.750	"
"			aximum flow	0.02		0.263		0.266	c.m/sec"
"	40		DROGRAPH Add Runof						
"		4	Add Runoff "						
"				266	0.000	C	.000"		
"	54	PC	ND DESIGN"						


ENGINEERING & CONSULTING LTD.

"	0.266	Current p	eak flow	c.m/sec'	•	
"	0.078	Target ou	itflow	c.m/sec"		
"	524.8	Hydrograp	h volume	c.m"		
"	11.	Number of	stages"			
"	0.000	Minimum w	ater leve	l metre'	•	
"	1.500	Maximum w	ater leve	l metre'	•	
"	0.000	Starting	water lev	el metre	<u>،</u> آ	
"	0	Keep Desi	.gn Data:	1 = True; () = Fal	se"
"		Level D	ischarge	Volume"		
"		0.000	0.000	0.000"		
"		0.1500	1.00E-07	33.000"		
"		0.3000	1.00E-07	66.000"		
"		0.4500	1.00E-07	99.000"		
"		0.6000	0.01027	132.000"		
"		0.7500	0.03866	165.000"		
"		0.9000	0.05381	198.000"		
"		1.050	0.06555	231.000"		
"		1.200	0.07549	264.000"		
"		1.350	0.08426	297.000"		
"		1.500	0.09220	330.000"		
"	1.	ORIFICES"				
"		Orifice	Orifice	Orifice N	Jumber	of"
"		invert c	coefficie	diameter	orific	es"
"		0.450	0.630	0.2100	1.0	00"
"	Pe	ak outflow	1	0.	.076	c.m/sec"
"	Ma	ximum leve	1	1.	208	metre"
"	Ma	ximum stor	age	265.		
"	Ce	ntroidal l	aq	2.	.586	hours"
"		0.266	0.266	0.076	0.0	00 c.m/sec"

Appendix 'E'


Garrison Road Plan & Profile, Sheet 6 Garrison Road Plan & Profile, Sheet 7 East Bertie Sewerage System Plan & Profile



 			1+140.0	
DATE	BY			
		BENCH MARK		E TY E
		FROM INTERSECTION OF HWY 3 (GARRISON RD) AND THOMPSON RD, GO 1.4KM WEST TO GARRISON RD		FORT*EF
 JUNE 13, 2013	YR	PUBLIC SCHOOL, CAP IS IN SOUTH FACE OF CONCRETE FOUNDATION IN EASTWARD PROJECTION,		
 AUG 31, 2011	SB	36.80m NORTH OF CENTRE OF HWY 3, 0.30m WEST		Our Focus: Your F
 JULY 21, 2011	SB	OF EASTERY CORNER. BM # V010895202 NORTHING 4752050		
 JULY 13, 2011	SB	EASTING 666800		INFRASTRUCTUR
 JULY 7, 2011	SB	ELEVATION 188.281		SERVICES

	IT to be Field Located HS # 1156	Cut Plugg & Abando (TYP)	ed pried
		Ex San MH 4-SA14-0020 Rim Elev 187.63 (Lot 5 Abandoned	0 - 1 ^{5 k}
Storm Sewer SA	Ex CBNH#28 Rim 187.52	Ex 525mmø Conc Storm Sewer	- SA
			EET 7 196.5
Ex 300mm Cone Storn	ø n Sewer	Ex 300mm# Cone Storm Se	H SH
F0 F0 R	x CB# Im 187.51 0-1NV F0K0		SEE
G G	G G G	C C	<u>G</u> G
	Ex CBMH#28 Rim 187.52 W Inv 185.07 E Inv 185.07	Ex San MH 4-SA14-0020 Rim Elev 187.62 W Inv 183.27 E. Inv 183.27 (To-55 Abandon	
Ex EP North			
Sewer		Ex 525mmø Conc Storm Sewer	
	Ex 300mmø AC Sanitary Se	swer (Io-BE Abandoned)	
			183.27
1+170.0 SAN	GARRI	SON ROAD VER REPLACEM	ENT
	DSN. CKD. SMM 1:200	DWN. SB PROJECT NO. IS10.GRSS DWG. NO.	DWG. CKD. SB REV.

· · · · · · · · · · · · · · · · · · ·			-	
	Ex CB#30A	Ex Son MH - 4-SA14-0030 Rim Elev 187.84		
	Ex CB#30A Rim 187.67 N inv S inv W inv 185.75	Ex San MH 	>	
		4	****	
			-	
	Ex 300mmø AC Watermain	2015 m - 2015 201 m - 2020 201 m - 400 100 m - 100 200 m - 100 4 440 8 m - 640 8 m - 640 m - 760 m		
			an tao ang katang kanang sang kanang kanang sang kanang sa	
·			A STELLAGO TURANTA A DATA DA DA TURANTA D	
				Ex 300mmø AC Sanitary Sewer (Jo-56 Abandoned)
		nnandepaysed Sign fan de Marine Instantier en versen de verste men en sen en se		
	New Prop Concrete Sanitary Sewer 450mmg—117.0m © 0.23%			
		107 A (1974) 11 11 11 11 11 11 11 11 11 11 11 11 11		
	52 64	183.49		
117.0m-450mmø Cor	ncrete Sanitary Sewer Class 100D © 0.23%	-		
				187,81
				187.81
	1+260.0		1+290.0	
	₽		<u>+</u>	
PROPOS	ED		REV.	ISSUE
SA SA	Sanitary Sewer Sanitary Inspection Tee		5	ISSUED FOR AS BUILT
	Concrete Curb		4	ISSUED FOR CONSTRUCTION ISSUED FOR MOE
(5A)			2	ISSUED FOR TENDER
(sa)	Sanitary Manhole		1	ISSUED TO REVIEW

