

Upper Canada Planning & Engineering Ltd.

3-30 Hannover Drive
St. Catharines, ON
L2W 1A3
Phone 905-688-9400
Fax 905-688-5274

STORMWATER MANAGEMENT PLAN CRESCENT ACRES TOWN OF FORT ERIE

Prepared by:

Upper Canada Consultants 30 Hannover Drive, Unit 3 St. Catharines, Ontario L2W 1A3

November 2022

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Study Area	1
	1.2 Objectives	1
	1.3 Existing and Future Conditions	3
2.0	STORMWATER MANAGEMENT CRITERIA	3
3.0	STORMWATER ANALYSIS	4
	3.1 Design Storms	4
	3.2 Existing Conditions	5
	3.3 Proposed Conditions	7
4.0	STORMWATER MANAGEMENT ALTERNATIVES	9
	4.1 Screening of Stormwater Management Alternatives	9
	4.2 Selection of Stormwater Management Alternatives	10
5.0	STORMWATER MANAGEMENT PLAN	12
	5.1 PROPOSED SWM FACILITY	12
	5.1.1 Water Quality	12
	5.1.2 Erosion Control	12
	5.1.3 SWM Facility Configuration	13
	5.3 Stormwater Management Facility Maintenance	17
6.0	SEDIMENT AND EROSION CONTROL	18
7.0	CONCLUSIONS AND RECOMMENDATIONS	19

LIST OF TABLES

Table 1.	Rainfall Data	5
Table 2.	Hydrologic Parameters for Existing Conditions	5
Table 3.	Hydrologic Parameters for Future Conditions	7
Table 4.	Peak Flows and Runoff Volumes	7
Table 5.	Evaluation of Stormwater Management Practices	11
Table 6.	Proposed SWM Facility - Stormwater Quality Volume Calculations	12
Table 7.	Proposed SWM Facility- Stormwater Quality Volume Requirements	12
Table 8.	Proposed Stormwater Management Facility Forebay Sizing	15
Table 9.	Proposed Stormwater Management Facility Characteristics	16
Table 10.	Proposed SWM Facility - MECP Quality Requirements Comparison	16
Table 11.	Existing and Future Peak Flow Comparison	16

LIST OF FIGURES

Figure 1.	Site Location Plan	2
Figure 2.	Existing Stormwater Drainage Areas	6
Figure 3.	Future Stormwater Drainage Areas	8
	<u>APPENDICES</u>	
Appendix A	North Crescent Park Storm Drainage Area Plan (Philips Engineering) North Crescent Park Storm Sewer Design Sheet (Philips Engineering)	
Appendix B	Modified Storm Sewer Design Sheet Calculations	
Appendix C	Stormwater Management Facility Details	
Appendix D	MIDUSS Analysis Output Files	

REFERENCES

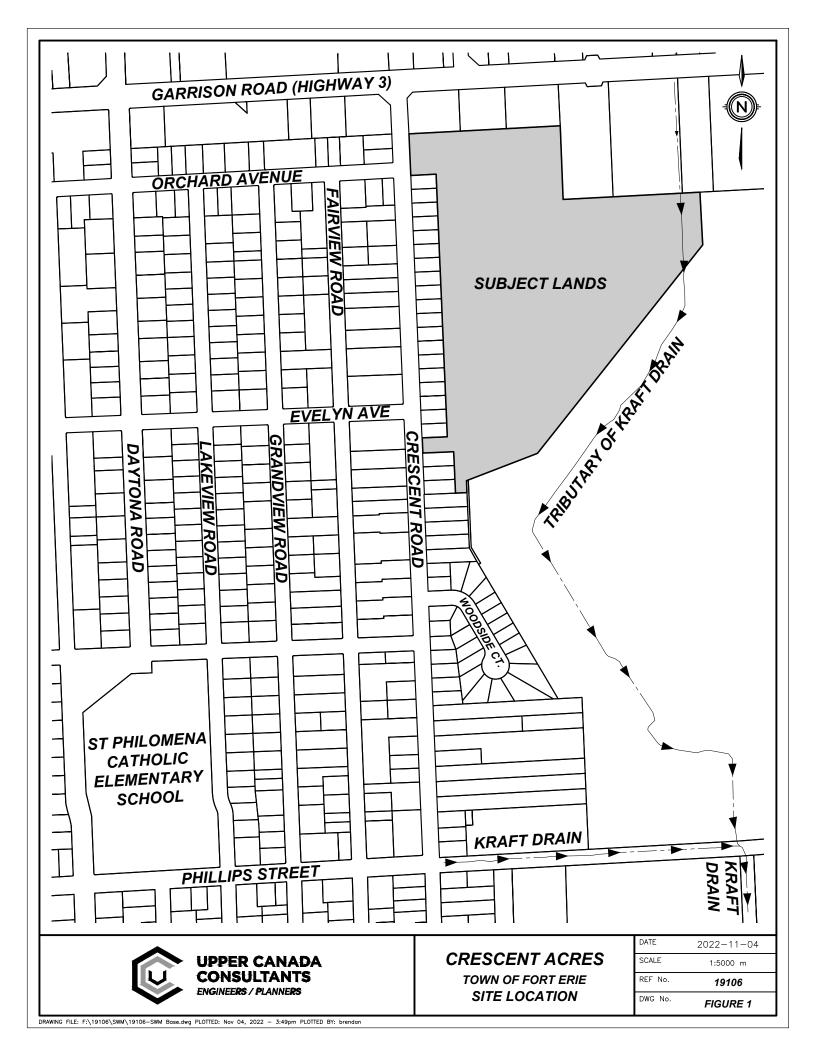
- 1. Keeping Soil on Construction Sites Erosion & Sediment Control Guidelines for Hamilton Harbour Watershed and Region of Hamilton-Wentworth (April 1994)
- 2. Stormwater Management Planning and Design Manual Ontario Ministry of the Environment (March 2003)
- 3. Stormwater Quality Best Management Practices
 Ontario Ministry of Environment and Energy (June 1991)
- 4. Guidelines for Development of New Subdivisions Town of Fort Erie (2016)

STORMWATER MANAGEMENT PLAN

CRESCENT ACRES

THE TOWN OF FORT ERIE

1.0 INTRODUCTION


1.1 Study Area

The Crescent Acres subdivision is located in the Crescent Park neighbourhood of Town of Fort Erie. As shown in Figure 1, the subject lands are located east of Crescent Road, south of Garrison Road, west of Kraft Road, and north of Woodside Court. The current land-uses surrounding the site are low density residential to the west, commercial and residential to the north, and open space to the east and south, containing a tributary to the Kraft Drain which flows southerly along the eastern limit of the site.

1.2 Objectives

The objectives of this study are as follows:

- a. Establish criteria for the management of stormwater runoff from this site.
- b. Determine the impact of development on the peak flow of runoff from this site.
- c. Investigate alternatives for controlling the quality of stormwater runoff from this site.
- d. Establish property requirements for the stormwater management facility for the Draft Plan of Subdivision.

1.3 Existing and Future Conditions

Existing Conditions

A Storm Drainage Area Plan was prepared by Philips Engineering for the North Crescent Park area, where the subject lands are located. An associated storm sewer design sheet for the 2 year design storm event was included to demonstrate the conveyance of stormwater flows from the North Crescent Park area to the headwall structure located at the intersection of Phillips Street and Crescent Road, discharging to the Kraft Drain. A copy of the Storm Drainage Area Plan and associated sewer design calculations have been included in Appendix A for reference.

As shown in Figure 2, the existing drainage patterns for the subject lands convey stormwater flows easterly to the adjacent tributary to the Kraft Drain. As such, stormwater flows from the subject lands were not originally allocated to the storm sewers flowing southerly on Crescent Road in the Philips Engineering sewer design. However, an analysis of the sewer design calculations show that there is available capacity in the Crescent Road storm sewers to receive peak stormwater flows from the subject lands in the 2 year design storm event, and modification to the sewer design sheet also shows that capacity is available up to the 5 year design storm event.

It was calculated that the existing Crescent Road storm sewer have an available capacity of 893.91 L/s in the 2 year design storm event and 143.9 L/s in the 5 year design storm event. Stormwater flows captured and conveyed through the Crescent Road storm sewers ultimately discharge to the Kraft Drain at a headwall structure located downstream of the subject lands, immediately east of the intersection of Crescent Road and Phillips Street. The modified storm sewer design sheets have been included in Appendix B for reference.

Future Conditions

The subject lands will consist of a mixture of single detached, semi-detached, and townhouse residential dwellings. The site will be serviced with a full urban road profile including municipal water, sanitary sewers, asphalt pavement, concrete curbs, catchbasins and storm sewers.

2.0 STORMWATER MANAGEMENT CRITERIA

New developments are required to provide stormwater management according to provincial and municipal policies including:

- Stormwater Quality Guidelines for New Development (MOEE/MNR, May 1991).
- Stormwater Management Planning and Design Manual (MOE, March 2003)

Based on policies from the Region of Niagara, the Niagara Peninsula Conservation Authority (NPCA), the Ministry of Environment, Conservation and Parks (MECP) and the Town of Fort Erie the following site specific considerations were identified:

- The ultimately outlet for the subject lands (Kraft Drain) has been classified as Marginal (Type 3) Fish Habitat by the Ministry of Natural Resources. Based on this classification, the corresponding MECP level of protection for new developments in these watersheds will be Normal (70% TSS Removal).
- The proposed stormwater management systems will be constructed to control future stormwater flows to allowable levels.

Based on the above policies and site specific considerations, the following stormwater management criteria have been established for this site.

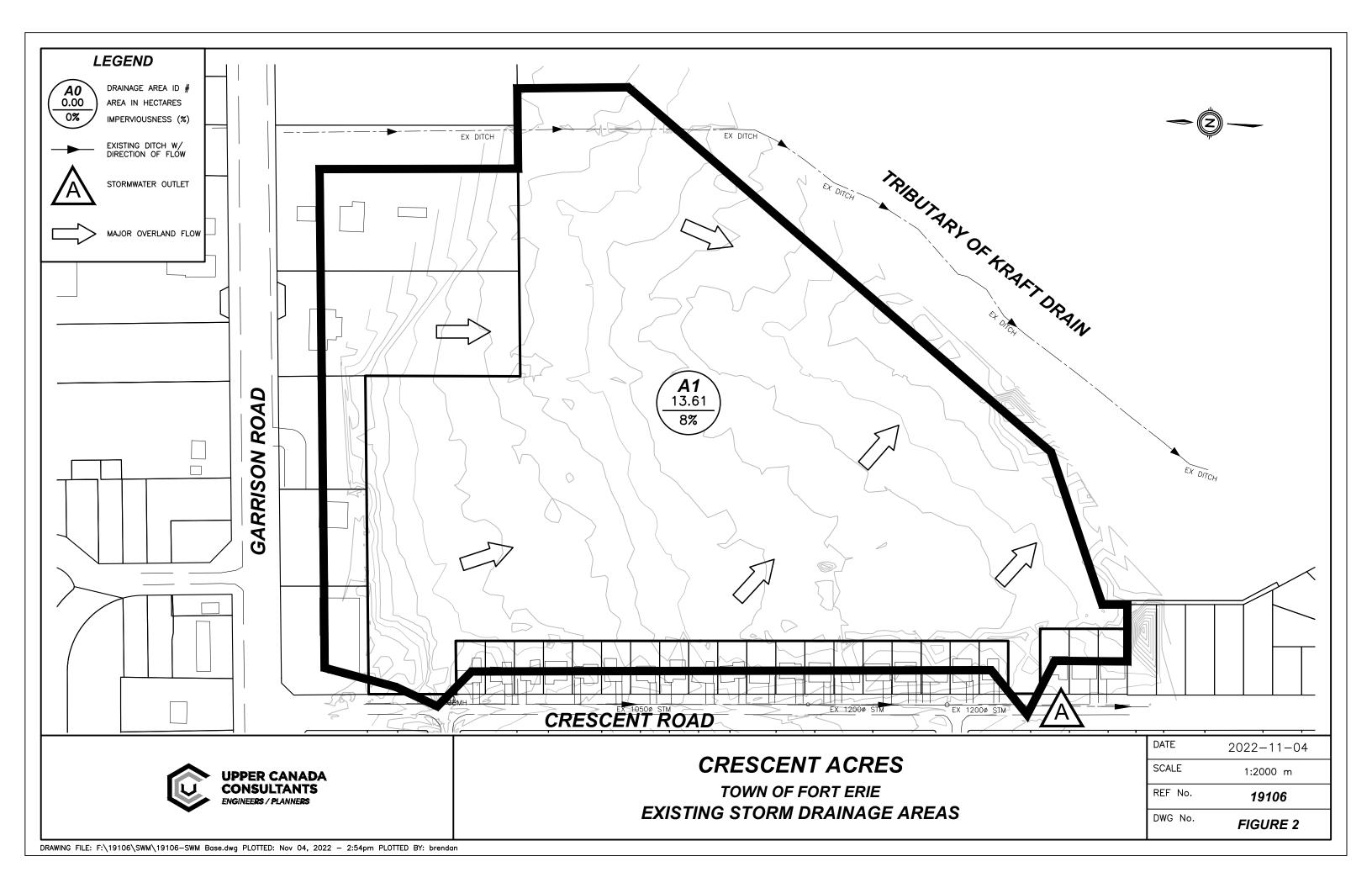
- Stormwater **quality** controls are to be provided for the internal storm system of the subdivision to provide Normal Protection (70% TSS Removal) according to MECP guidelines.
- Stormwater **quantity** controls are to be provided to ensure future flow conditions are below the allowable 5 year capacity of the existing storm sewers on Crescent Road (143.9 L/s) for the 2 and 5 year design storms.
- Stormwater **quantity** controls are to be provided to ensure future flows from the subject lands are below existing levels in the Kraft Drain for the 100 year design storm.

3.0 STORMWATER ANALYSIS

Stormwater flows for the existing and future conditions were estimated using the MIDUSS computer modelling program. This program was selected because it is applicable to both urban and rural drainage areas like the subject lands. It is relatively easy to use and modify for the future drainage conditions and control facilities. It readily allows for design storm hyetographs for the various return periods being investigated.

3.1 Design Storms

Design storm hyetographs for the 2, 5, and 100 year events use a Chicago distribution based on the Intensity-Duration-Frequency (IDF) curves provided by the Town of Fort Erie. The 25mm design storm event IDF curve parameters were derived using a 4 hour Chicago distribution. Table 1 summarizes the rainfall data applied in the stormwater modelling.


Table 1. Rainfall Data									
Design Storm (Return	Chicago	Duration							
Period)	a	c	(minutes)						
25mm	512.00	6.000	0.800	240					
2 Year	628.05	6.652	0.796	240					
5 Year	747.93	6.800	0.768	240					
100 Year	0.735	240							
	RainfallIntensity (mm/hr) = $\frac{a}{(t_d + b)^c}$ $t_d = Time \ of \ concentration/duration$								

3.2 Existing Conditions

Existing stormwater flows to the Kraft Drain were determined based on existing drainage conditions shown in Figure 2 to determine the impact of the proposed development on the receiving watercourse in the 100 year design storm event. For the 2 and 5 year design storms, future peak flows are to be controlled to the allowable capacity within the existing storm sewers on Crescent Road.

The existing drainage area, as shown in Figure 2, was assessed based on the existing parameters shown in Table 2.

	Table 2. Hydrologic Parameters for Existing Conditions									
Area	Area	Length	Slope	Manni	ng -''n''	Soil		Percent		
No.	(ha)	(m)	(%)	Perv	Imperv	Types	SCS CN			
1	13.61	301	1.00	0.25	0.015	CD	77	8%		

3.3 Proposed Conditions

As shown in Figure 3 and summarized in Table 3 below, the future stormwater drainage areas have been delineated as follows:

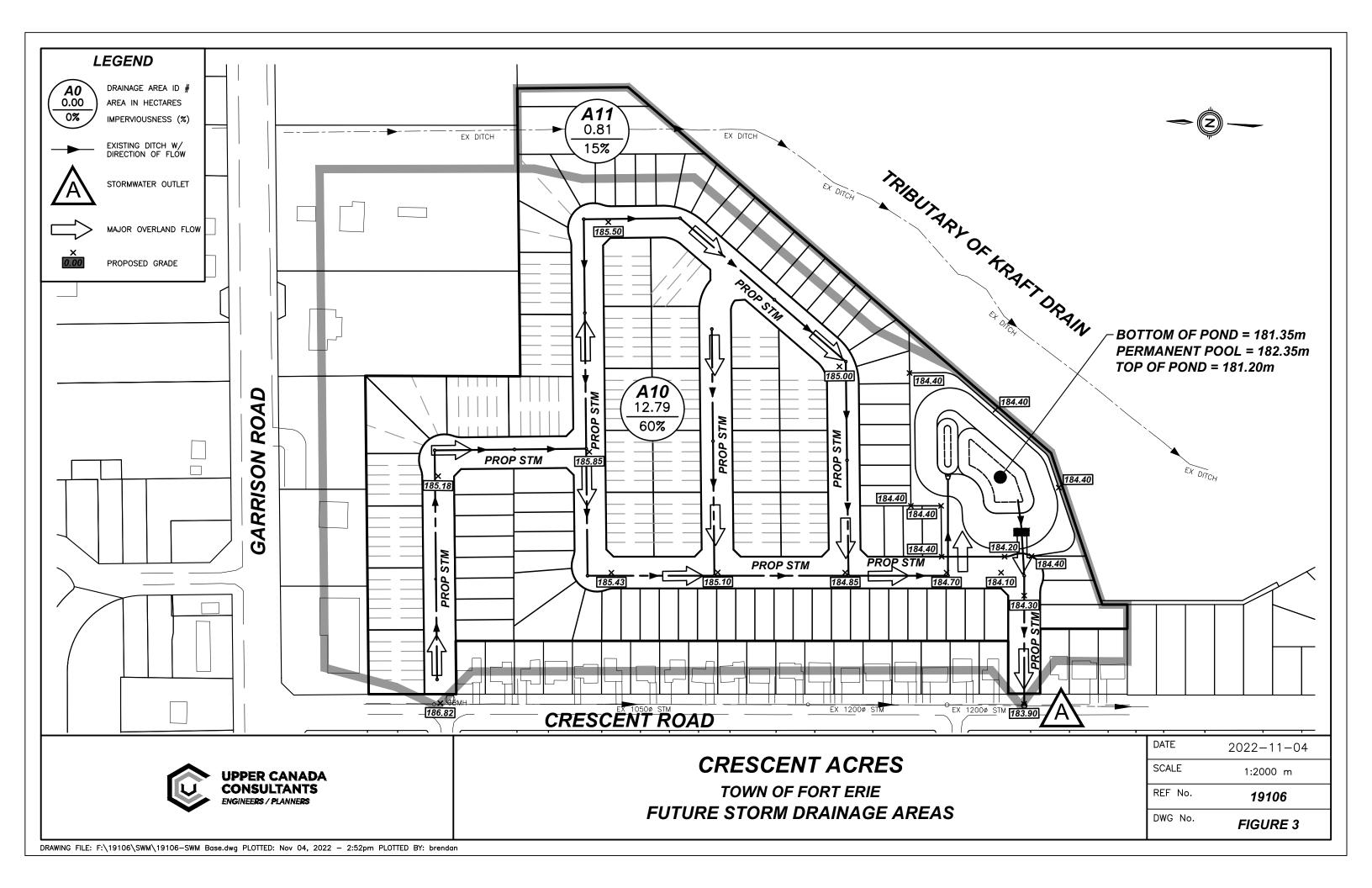

- Area A10, which conveys stormwater flows to the existing storm sewers on Crescent Road; and,
- Area A11, which conveys uncontrolled flows directly to the existing tributary to the Kraft Drain to maintain base flows within the tributary.

	Table 3. Hydrologic Parameters for Future Conditions									
Area	Area	Length	Slope	Manni	Manning -''n'' Perv Imperv Types			Percent		
No.	(ha)	(m)	(%)	Perv			SCS CN			
10	12.79	292	1.0%	0.25	0.015	CD	77	60%		
11	0.81	73	1.0%	0.25	0.015	CD	77	15%		

Drainage area A11 conveys clean stormwater flows from the grassed open space area within the subject lands and the rear yard areas of the proposed residential dwellings. Therefore, the uncontrolled stormwater drainage from Area A11 will have no negative impact on the overall quality of stormwater flows discharging to the existing tributary to the Kraft Drain.

Table 4. Peak Flows and Runoff Volumes									
Dogian	Peak	Flows (m ³ /	(s)	Runoff Volumes (m ³)					
Design Storm	Existing/ Allowable	Future*	Change	Existing	Future*	Change			
2 Year	0.144	0.887	516%	-	-	-			
5 Year	0.144	1.246	765%	-	-	-			
100 Year	0.477	2.140	349%	4,789	7,311	53%			
Note	: * denotes peak	flows without	any Stormwat	er Management	t Facility in pla	ce.			

As shown in Table 4, peak stormwater flows and volumes increase above allowable/existing levels under future conditions. Therefore, stormwater management quantity controls (storage) will be required.

4.0 STORMWATER MANAGEMENT ALTERNATIVES

4.1 Screening of Stormwater Management Alternatives

A variety of stormwater management alternatives are available to control the quantity and quality of stormwater runoff, most of which are described in the Stormwater Management Planning and Design Manual (MOE, March 2003). Alternatives for this site were considered in the following broad categories: lot level, vegetative, infiltration and surface storage controls. Individual alternatives are listed in Table 5 with comments on their effectiveness and applicability to this site.

a. Lot Level Controls

Lot level controls are not generally suitable as the primary control facility for quality control. They are generally used to enhance stormwater quality levels in conjunction with other types of control facilities. Where soils are suitable, infiltration techniques can be very effective in providing quantity and quality control.

b. <u>Vegetative Alternatives</u>

Vegetative stormwater management practices are generally not suitable as the primary control facility for quantity or quality controls. They are generally used to reduce the rate of runoff and to enhance stormwater quality in conjunction with other types of control facilities.

c. Infiltration Alternatives

Where soils are suitable, infiltration alternative can be very effective in providing both quality and quantity controls. However, economics generally limit the use of these techniques to relatively small sites (<1.5 ha). The soils on this site are predominantly clay with infiltration rates of less than 12 mm/hr. Infiltration alternatives may provide some quality benefits, however, due to the low infiltration rates and large development site, infiltration alternatives are not considered feasible for the primary control facilities.

d. Storage

Surface storage techniques can be very effective in providing quality and quantity control. Dry facilities are effective practices for stormwater erosion and flood control for large drainage areas (>5 ha).

Wet facilities are effective practices for stormwater erosion, quality and quantity control for large drainage areas (>5 ha).

4.2 Selection of Stormwater Management Alternatives

Stormwater management alternatives were screened based on technical effectiveness, physical suitability for this site, and their ability to meet the stormwater management criteria established for this site. The following stormwater management alternatives are recommended for implementation on this site:

- a. **Lot grading** to be kept as flat as practical in order to slow down runoff and encourage infiltration.
- b. **Roof water leaders** to be discharged to the ground surface in order to slow down runoff and encourage infiltration.
- c. **Grassed swales** to be used to collect and convey rear lot drainage.
- d. **A wet pond** will be used to provide stormwater quality control and quantity control and downstream erosion control for frequent storms.

	Table 5. Evaluation of Stormwater Management Practices									
Crescent Acres		Criteria fo Stormwater Mar	or Implementationagement Practic	Technical	Recommend					
	Topography	Soils	Bedrock	Groundwater	Area		Implementation	Comments		
Site Conditions	Flat <1%	Clay <12mm/hr	At Considerable Depth	At Considerable Depth	±12.79 ha	(10 high)	Yes / No			
Lot Level Controls										
Lot Grading	<5%	nlc	nlc	nlc	nlc	2	Yes	Quality/quantity benefits		
Roof Leaders to Surface	nlc	nlc	nlc	nlc	nlc	2	Yes	Quality/quantity benefits		
Roof Ldrs.to Soakaway Pits	nlc	loam, infiltr. > 15 mm/hr	>1m Below Bottom	>1m Below Bottom	< 0.5 ha	6	No	Quality/quantity benefits		
Sump Pump Fdtn. Drains	nlc	nlc	nlc	nlc	nlc	2	Yes	Unsuitable site soil conditions		
Vegetative										
Grassed Swales	< 5 %	nlc	nlc	nlc	nlc	7	Yes	Quality/quantity benefits		
Filter Strips(Veg. Buffer)	< 10 %	nlc	nlc	>.5m Below Bottom	< 2 ha	5	No	Unsuitable site conditions		
Infiltration										
Infiltration Basins	nlc	loam, infiltr. > 15 mm/hr	>1m Below Bottom	>1m Below Bottom	< 5 ha	2	No	Unsuitable site soil conditions		
Infiltration Trench	nlc	loam, infiltr. > 15 mm/hr	>1m Below Bottom	>1m Below Bottom	< 2 ha	4	No	Unsuitable site soil conditions		
Rear Yard Infiltration	< 2.0 %	loam, infiltr. > 15 mm/hr	>1m Below Bottom	>1m Below Bottom	< 0.5 ha	7	No	Unsuitable site soil conditions		
Perforated Pipes	nlc	loam, infiltr. > 15 mm/hr	>1m Below Bottom	>1m Below Bottom	nlc	4	No	Unsuitable site soil conditions		
Pervious Catch basins	nlc	loam, infiltr. > 15 mm/hr	>1m Below Bottom	>1m Below Bottom	nlc	3	No	Unsuitable site soil conditions		
Sand Filters	nlc	nlc	nlc	>.5m Below Bottom	< 5 ha	5	No	High maintenance/poor aesthetics		
Surface Storage										
Dry Ponds	nlc	nlc	nlc	nlc	> 5 ha	7	No	Less effective than wet facilities		
Wet Ponds	nlc	nlc	nlc	nlc	> 5 ha	10	Yes	Effective quality control		
Wet Lands	nlc	nlc	nlc	nlc	> 5 ha	9	No	Very effective quality control		
Other										
Underground Storage	nlc	nlc	nlc	nlc	< 2.0 ha	8	No	Quantity benefits only		
Oil/Grit Separator	nlc	nlc	nlc	nlc	< 2.7 ha	3	No	Quality benefits only		

Reference : Stormwater Management Practices Planning and Design Manual - 1994 nlc - No Limiting Criteria

5.0 STORMWATER MANAGEMENT PLAN

A MIDUSS model was created to assess existing and future peak flows and stormwater volumes generated within the site. The proposed stormwater management facility shall provide quality and quantity controls for the subject lands.

The MIDUSS modelling output files for existing and future conditions have been provided in Appendix D for reference.

5.1 PROPOSED SWM FACILITY

5.1.1 Water Quality

The stormwater drainage outlet for the proposed wet pond is the Kraft Drain, where *Normal* protection is required. Based on Table 3.2 of SWMP & Design Manual, the Normal water quality storage requirement for wet pond facilities in a development with 60% impervious area is approximately 117 m³/ha. The wet pond facility will provide stormwater quality controls for a drainage area of approximately 12.79 hectares as shown in the Table 6 as follows:

Table 6. Proposed SWM Facility - Stormwater Quality Volume Calculations								
Total Water Quality Volume = 12.79 ha x 117 m ³ /ha = 985 m ³	Reference: Table 3.2, SWMP & Design Manual (MOE 2003)							
Permanent Pool Volume = 12.79 ha x 77 m ³ /ha = 985 m ³	Extended Detention Volume = 12.79 ha x 40 m ³ /ha = 512 m ³							

5.1.2 Erosion Control

Using the MIDUSS hydrological model, the stormwater volume from the 25 mm - 4 hour design storm event for the 12.79 hectare study area is $1,702 \text{ m}^3$.

The following table shows the stormwater storage volumes required using both the water quality and erosion control guidelines.

7	Table 7. Proposed SWM Facility- Stormwater Quality Volume Requirements						
A.	Permanent Pool Volume	985 m^3					
B.	Extended Detention Volume	512 m^3					
C.	Stormwater Volume from 25mm - 4 hour rainfall event	$1,702 \text{ m}^3$					
D.	Maximum Extended Detention Volume (greater of B & C)	$1,702 \text{ m}^3$					
	Total Quality and Extended Detention Volume (A + D)	2,687 m ³					

5.1.3 SWM Facility Configuration

It is proposed to construct a three stage outlet control structure for the facility. The first stage of control consists of an orifice to detain the extended detention volume and release it slowly over an extended period of time (minimum of 24 hours). The second stage of control is provided by a double ditch inlet catch basin and outlet control pipe which provide an outlet for flows exceeding the extended detention volume. The third stage of control is provided by an overflow spillway for major stormwater events.

The bottom elevation of the facility is 181.35 m and the permanent pool water level is 182.35 m for a water depth of 1.0 metres and provides 1,043 m³ of permanent storage in the facility. The effective top of the facility is proposed at 184.21 m, and the facility will be constructed with 10:1 and 7:1 side slopes max in accordance with the Town of Fort Erie "Guidelines for Development of New Subdivisions" (2016).

Based on the proposed configuration of the proposed facility shown in Figure 3, it was determined that a 150mm diameter orifice at an invert of 182.35 m will provide approximately 36.8 hours of detention for the extended detention volume of storage. The proposed detention time for this facility was calculated using Equation 4.11 from section 4.6.2 of the Stormwater Management Planning & Design Manual (MOE, 2003).

The rim elevation for the double ditch inlet chamber is proposed at 183.70 m and will provide a maximum extended detention volume of 4,153 m³, which is greater than the required 1,702 m³. A 450mm outlet control pipe shall operate as an orifice at an invert of 182.35 m in the ditch inlet and conveys stormwater flows up to and including the 5 year design storm event to the existing storm sewers on Crescent Road.

To control stormwater flows in excess of the 5 year design storm event, a major overland flow path has been proposed to convey major overland flows from the internal subdivision roadways to the proposed SWM Facility, as shown in Figure 3. When the water surface elevation within the SWM facility exceeds 184.20 m, stormwater flows are conveyed westerly overland to the southern proposed roadway entrance onto Crescent Road without surcharging northerly within the subdivision.

The proposed roadway entrance will function as a overflow "weir" at the proposed high point of 184.30m. Major stormwater flows will discharge westerly to the road allowance of Crescent Road from the proposed curb and gutter, which will function as the weir "crest" at an elevation of 184.21m. To prevent major stormwater flows from discharging to the tributary to the Kraft Drain from the proposed SWM facility, a berm will be constructed along the eastern limit of the SWM Facility. The proposed building aprons and berm will be constructed to a minimum elevation of 184.40m.

A stage-storage-discharge relationship was prepared for the facility, which is included in Appendix C for reference purposes.

Stormwater Management Plan Crescent Acres, Town of Fort Erie

A sediment forebay was included in this stormwater management facility to minimize the transport of heavy sediment from the storm sewer outlet throughout the facility and to localize maintenance activities. Preliminary calculations for the forebay sizing follow MECP Guidelines and is shown in Table 8 for the storm sewer outlet.

Table 8. Proposed Stormwater Management Facility Forebay Sizing										
a) Forebay Settling Length (MOE SWMP&D, Equation 4.5)										
		r=	6.5	:1	(Length:Width Ratio)					
Settling Length = $\sqrt{\frac{r * Qp}{Vs}}$		$Q_p =$	0.023	m ³ /s	(25mm Storm Pond Discharge)					
·		$V_s =$	0.0003	m/s	(Settling Velocity)					
Settling Length = 22.32 m										
b) Dispersion Length (MO	E SW	MP&D, E	quation 4	1.6)						
80		Q =	1.246	m ³ /s	(5 Yr Stm Sew Design Inflow)					
Dispersion Length = $\frac{8 Q}{D V_f}$		D =	1.50	m	(Depth of Forebay)					
,		$V_{\rm f}$ =	0.5	m/s	(Desired Velocity)					
Dispersion Length = 13	3.29	m								
c) Minimum Forebay Deep	Zone	e Bottom V	Vidth (M	OE SW	MP&D, Equation 4.7)					
$Width = \frac{Dispersion\ Length}{2}$	ı	Minimum	Forebay	Length	from Equations 3.3 and 3.4					
8 8	-		22.32	m	(minimum required length)					
Width = 2	2.79	m (minin	num requ	aired wi	dth)					
d) Average Velocity of Flo	W									
		Q =	0.679	m ³ /s	(Storm Sewer Quality Design Inflow)					
, , , , , ,		A =	12.75	m^2	(Cross Sectional Area)					
Average Velocity = $\frac{Q}{A}$		D =	1.50	m	(Depth of Forebay)					
		$\mathbf{W} =$	4.00	m	(Proposed Bottom Width)					
		S =	3	:1	(Side slopes - minimum)					
Average Velocity =	0.05	m/s								
Is this Acceptable? Y	es	(Maxi	mum vel	ocity of	flow = 0.15 m/s)					
e) Cleanout Frequency										
Is this Acceptable? Y	es	L =	26.0		(Proposed Bottom Length)					
		ASL =	2.0	m³/ha	(Annual Sediment Loading)					
		A =	12.79	ha	(Drainage Area)					
		FRC =	70	%	(Facility Removal Efficiency)					
		FV =	419.3	m^3	(Forebay Volume)					
Cleanout Frequency = 1	1.5	years								
Is this Acceptable? Y	es	(10 ye	Is this Acceptable? Yes (10 year minimum cleanout frequency)							

Tables 9 summarizes the characteristics of the proposed Wet Pond for various design storm events and indicates the peak flow to Crescent Road and ultimately the Kraft Drain. Based on the MIDUSS model, the maximum wet pond elevation is $184.00 \, \text{m}$ with an active storage volume of $5,522 \, \text{m}^3$ for the $100 \, \text{year}$ design storm event.

Table 9. Proposed Stormwater Management Facility Characteristics									
Design Storm	Peak Flo	ws (m ³ /s)	Maximum	Maximum Volume (m³)					
(Return Period)	Inflow	Outflow	Elevation						
2 Year	0.887	0.030	183.01	1,846					
5 Year	1.246	0.046	183.37	2,855					
100 Year	2.089	0.144	184.00	5,522					

Table 10. Proposed SWM Facility - MECP Quality Requirements Comparison											
SWM Facility Characteristic	MECP Requirement	Provided by SWM Facility Configuration									
Permanent Pool Volume (m³)	985 (min)	784									
Extended Detention Volume (m³)	1,702 (min)	3,886									
Total Quality + Detention Storage (m ³)	2,687 (min)	4,670									
Forebay Length (m)	22.32 (min)	26.00									
Forebay Width (m)	2.79 (min)	4.00									
Average Forebay Velocity (m/s)	0.15 (max)	0.05									
Cleanout Frequency (years)	10 (min)	11.5									

As shown in Tables 10 and 11, the proposed stormwater management facility configuration satisfies both the quality and quantity requirements for the 12.79 hectare drainage area.

Table	11. Existing and Futu	re Peak Flow Compari	ison									
	Peak Flows (m³/s)											
Design Storm (Return Period)	Existing / Allowable Conditions	Future Conditions	Change (%)									
2 Year	0.144	0.023	-84.0%									
5 Year	0.144	0.030	-79.2%									
100 Year	0.477	0.152	-68.1%									

5.3 Stormwater Management Facility Maintenance

Maintenance is a necessary and important aspect of urban stormwater quality and quantity measures such as constructed wetlands. Many pollutants (ie. nutrients, metals, bacteria, etc.) bind to sediment and therefore removal of sediment on a scheduled basis is required.

The wet pond for this development is subject to frequent wetting and deposition of sediments as a result of frequent low intensity storm events. The purpose of the wet pond is to improve future sediment and contaminant loadings by detaining the 'first flush' flow for a 24 hour period. For the initial operation period of the stormwater management facility, the required frequency of maintenance is not definitively known and many of the maintenance tasks will be performed on an 'as required' basis.

For example, during the home construction phase of the development there will be a greater potential for increased maintenance frequency, which depends on the effectiveness of sediment and erosion control techniques employed.

Inspections of the wet pond will indicate whether or not maintenance is required. Inspections should be made after every significant storm during the first two years of operation or until all development is completed to ensure the wet pond is functioning properly. This may translate into an average of six inspections per year. Once all building activity is finalized, inspections shall be performed annually. The following points should be addressed during inspections of the facility.

- a) Standing water above the inlet storm sewer invert a day or more after a storm may indicate a blockage in the reverse slope pipe or orifice. The blockage may be caused by trash or sediment and a visual inspection would be required to determine the cause.
- b) The vegetation around the wet pond should be inspected to ensure its function and aesthetics. Visual inspections will indicate whether replacement of plantings are required. A decline in vegetation habitat may indicate that other aspects of the constructed wet pond are operating improperly, such as the detention times may be inadequate or excessive.
- c) The accumulation of sediment and debris at the wet pond inlet sediment forebay or around the high water line of the wet pond should be inspected. This will indicate the need for sediment removal or debris clean up.
- d) The wet pond has been created by excavating a detention area. The integrity of the embankments should be periodically checked to ensure that it remains watertight and the side slopes have not sloughed.

Grass cutting is a maintenance activity that is done solely for aesthetic purposes. It is recommended that grass cutting be eliminated. It should be noted that municipal by-laws may require regular grass maintenance for weed control.

Trash removal is an integral part of maintenance and an annual cleanup, usually in the spring, is a minimum requirement. After this, trash removal is performed as required basis on observation of trash build-up during inspections.

To ensure long term effectiveness, the sediment that accumulates in the forebay area should be removed periodically to ensure that sediment in not deposited throughout the facility. For sediment removal operations, typical grading/excavating equipment should be used to remove sediment from the inlet forebay and detention areas. Care should be taken to ensure that limited damage occurs to existing vegetation and habitat.

Generally the sediment which is removed from the detention pond will not be contaminated to the point that it would be classified as hazardous waste. However, the sediment should be tested to determine the disposal options.

6.0 SEDIMENT AND EROSION CONTROL

Sediment and erosion controls are required during all construction phases of this development to limit the transport of sediment into downstream watercourses. Proposed sediment and erosion controls will be provided during for the final design and will include:

- Silt control fencing to minimize the transport of sediment offsite from the construction process.
- Straw bale filters in accordance with MNR/MOE guidelines.
- Re-vegetate disturbed areas as soon as possible after grading works have been completed.

7.0 CONCLUSIONS AND RECOMMENDATIONS

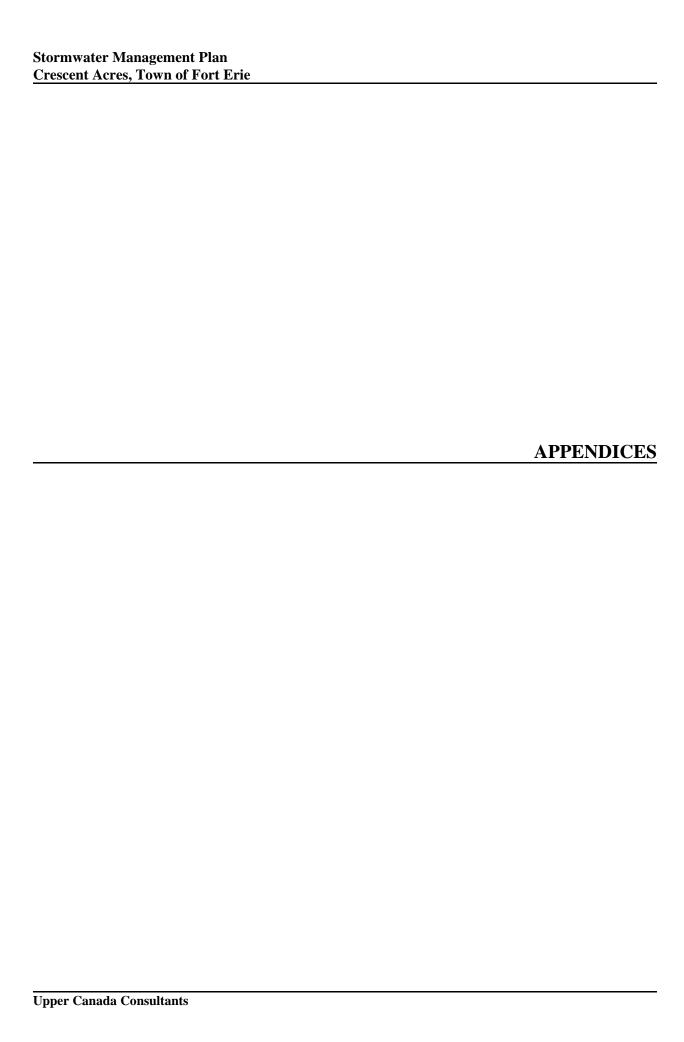
Based on the findings of this study, the following conclusions are offered:

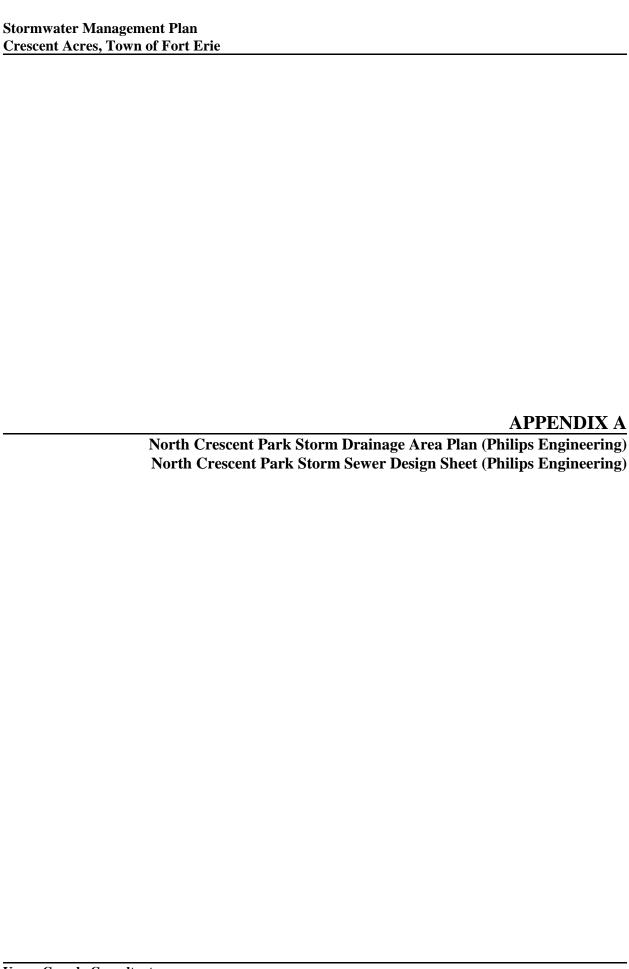
- Infiltration techniques are not suitable for this site as the primary control facility due to the site size and soil conditions.
- Roof water leaders shall discharge to grade to enhance the future infiltration levels.
- A single stormwater management wet pond facility shall be constructed to provide quality and quantity control.
- Various lot level and vegetative stormwater management practices can be implemented to enhance stormwater quality.
- This report was prepared in accordance with the provincial guidelines contained in "Stormwater Management Planning and Design Manual, March 2003".

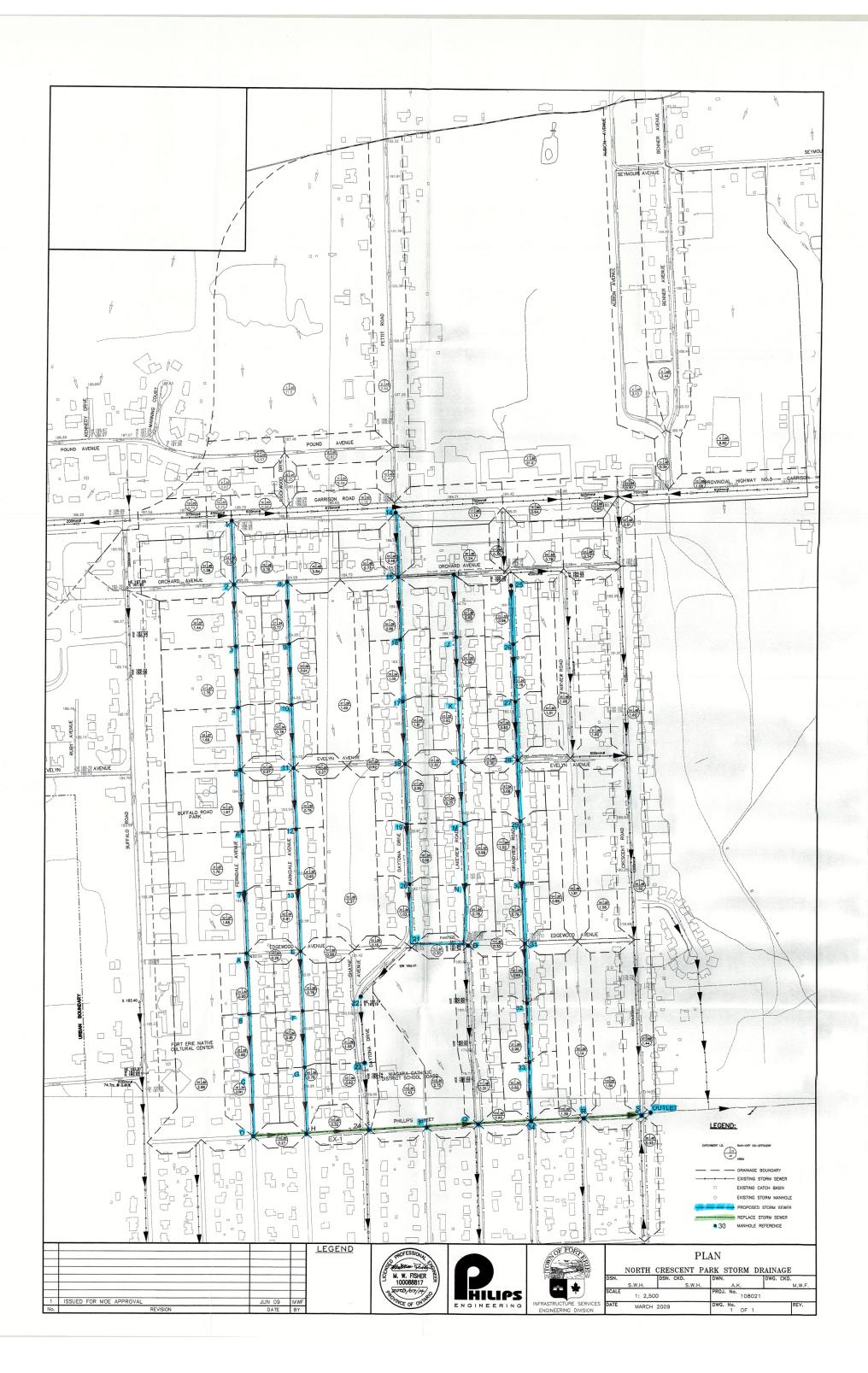
The above conclusions lead to the following recommendations:

- That the stormwater management criteria established in this report be accepted.
- That the stormwater management wet pond be constructed.
- That additional lot level controls and vegetative stormwater management practices as described previously in this report be implemented.
- That sediment and erosion controls during construction as described in this report be implemented.

Prepared By:


Brendan Kapteyn, E.I.T.


Reviewed By:


Jason Schooley, P.Eng

J. P. SCHOOLE

POLINCE OF OF

FILE: DATE:

108021 - STMDESIGN.xls July 14, 2009

PIPE:

n: 0.013

628.050 6.652

C

2 Year

1083.550 6.618 0.735

100 Year

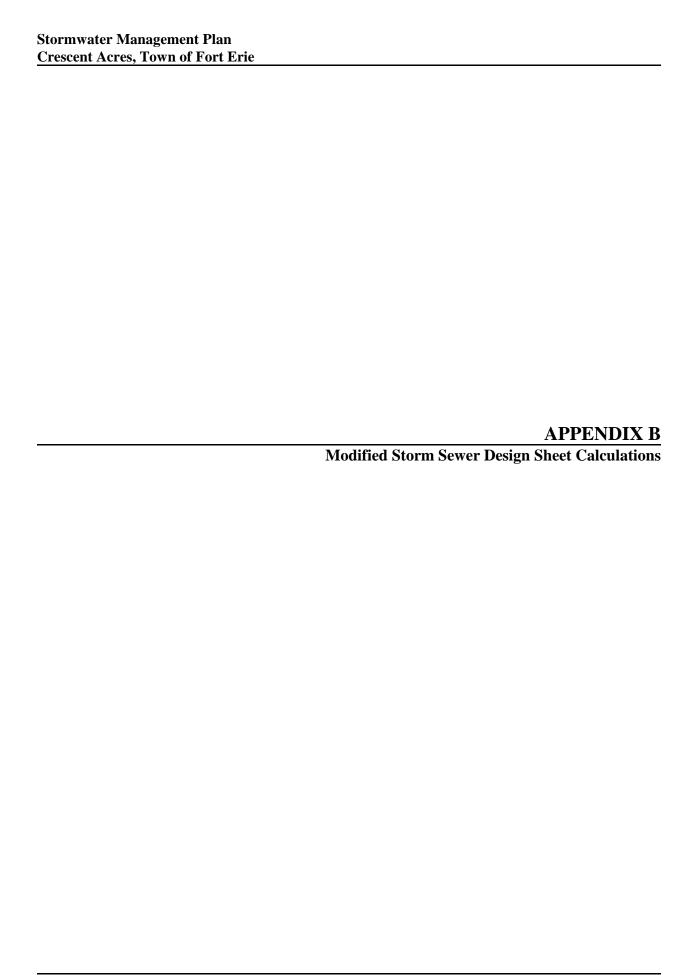
0.796 С

Modified System

THE TOWN OF FORT ERIE

COMMUNITY PLANNING & DEVELOPMENT SERVICES

STORM SEWER DESIGN SHEET


Q = 2.778 CIA

			STRUC	TURE					BUNGER				Г	DESIGN	FLOW									
LOCATIO	N	FROM MH			то мн		AREA ID	AREA	RUNOFF COEFF	CxA	TOTAL CXA	TIME OF CONC	RAINFALL INTENSITY			PIPE DIA	PIPE	LENGTH	TIME OF	PIPE	PERCENT	RAINFALL	DES FLOW	OVERLA
	NO.	INV.	APPROX. COVER	NO.	INV.	Sani. Invert		(ha)	С	(ha)	(ha)	(min)	i ₅ (mm/hr)	Q ₅ (I/s)	SLOPE (%)	(mm)	VELOCITY (m/s)	(m)	FLOW (min)	CAPACITY (I/s)	FULL	INTENSITY i100 (mm/hr)	Q ₁₀₀ (I/s)	FLOW (I/s)
East Drains	age - Towards Kr	aft Drain																						
Garrison R	oad and North A	rea																						
Garrison	North Area			Crescent			1 - 22	61.01	0.30	18.1245	18.1245	10.00	66.9433	3371	0.10	825	0.86	675.00	13.11	474	712	137.3168	6914	6.44
Ferndale Av	venue - Garrison	to Phillips																			7.12	107.0100	0.514	0.44
Ferndale	MH 1	184.793		MH 2	184.526	184.89	23	0.05																
Orchard	Buffalo	70 111 00		Ferndale	104.520	104.09	24	0.35	0,45	0.1575		10.00	66.9433	29	0.25	375	0.80	107,00	2.22	91	32	137.3168	60	_
Orchard	Parkdale			Ferndale			25	0.70	0.45	0.6210	0.6210	10.00	66.9433	115	0.20	OVLD		170.00				137.3168	237	
Ferndale	MH 2	184.301		MH 3	184.136	184.96	26	1.44	0.45	0.3150 0.3888	0.3150	10.00	66.9433	59	0,20	OVLD		90.00				137.3168	120	
erndale	MH 3	184.136		MH 4	183.899	184.53	27	1.75	0.27	0.3000	1.4823	12.22	60.5879	249	0.16	600	0.88	103.00	1.96	256	97	125.2119	516	2
erndale	MH 4	183.899		MH 5	183.577	184.21	28	1.69	0,27	0.4563	2.4111	14.18 15.81	56.0155 52.7532	304	0.23	600	1.05	103.00	1.63	307	99	116.4461	632	
Evelyn	Parkdale			Ferndale			29	0.27	0.20	0.0540	0.0540	10.00	66.9433	353 10	0.31	600	1.22	104.00	1.42	357	99	110.1602	738	3
erndale	MH 5	183.577		MH 6	183.067	183.83	30	1.67	0.27	0.4509	2.9160	17.23	50.2434	407	0.20	OVLD 600	1.55	100.00				137.3168	21	
erndale	MH 6	183.067		MH 7	182.455	183.23	31	1.70	0.27	0.4590	3.3750	18.32	48.4813	455	0.60	600	1.70	102.00	1.10	453	90	105.3049	853	
erndale	MH 7	182.455		MH A	181.751	182.85	32	1.68	0.27	0.4536	3.8286	19.32	46.9897	500	0.61	600	1.71	115.41	1.00	496 500	92	101.8854	955	4
dgewood	Parkdale	181.730		Ferndale			33	0.28	0.20	0.0560	0.0560	10.00	66.9433	10	0.10	OVLD	1.71	150.00	1.12	500	100	98.9837	1053	5.
erndale	MHA	181.751		MHB	181.151	181.65	34	0.85	0.34	0.2890	4.1736	20.45	45.4341	527	0.68	600	1.81	88.18	0.81	528	100	137.3168	21	- 2
erndale	MHB	180.851		MHC	180.749	179.97	35	0.88	0.33	0.2904	4.4640	21.26	44.3787	550	0.10	900	0.91	102.00	1.87	597	92	95.9503 93.8878	1112 1164	51
erndale	MHC	180.749		MH D	180.647	179.60	36	0.81	0.34	0.2754	4.7394	23.13	42.1467	555	0.10	900	0.91	102.00	1.87	597	93	89.5140	1179	50
arkdale Ave	enue - Orchard to	Phillips																				00.0140	1175	3
arkdale	MH 8	184.360		MH 9	184.103	104.50	67																	
arkdale	MH 9	184.103		MH 10	183.814	184.53	37	0.77	0.34	0.2618	0.2618	10.00	66.9433	49	0.25	375	0.80	103.00	2.14	91	53	137.3168	100	0.008
arkdale	MH 10	183.739		MH 11	183.531	184.13 183.64	38	0.91	0.34	0.3094	0.5712	12.14	60.8011	96	0.28	375	0.85	103.00	2.02	97	100	125.6194	199	0.102
arkdale	MH 11	183.531		MH 12	182.511	182.88	40	0.78	0.34	0.2652	0.8364	14.16	56.0507	130	0.20	450	0.81	104.00	2.14	133	98	116.5138	271	0.137
arkdale	MH 12	182.511		MH 13	181.899	182.30	41	0.78	0.33	0.2574	1.0938	16.30	51.8512	158	1.00	450	1.81	102.00	0.94	297	53	108.4173	329	0.032
arkdale	MH 13	181.899		MHE	181.185	181.85	42	0.81	0.33	0.2970	1.3908	17.24	50.2236	194	0.60	450	1.40	102.00	1.21	230	84	105.2666	407	0.176
arkdale	MHE	180.960		MHF	180.838	180.71	43	0.76	0.33	0.2508	1.6581	18.45	48.2847	222	0.70	450	1.52	102.00	1.12	249	89	101.5034	468	0.218
arkdale	MHF	180.763		MH G	180.661	179.52	44	0.81	0.34	0.2754	1.9089	19.57	46.6337	247	0.12	675	0.82	102.00	2.07	304	81	98.2902	521	0.217
arkdale	MHG	180.661		MHH	180.559		45	0.78	0.35	0.2730	2.4573	21.64	43.9007	266	0.10	750	0.81	102.00	2.11	367	73	92.9525	564	0.196
									0.00	0.2750	2.4573	23.75	41.4567	283	0.10	750	0.81	102.00	2.11	367	77	88.1586	602	0.234
nayne Aven	ue - Orchard to I	Daytona																		J.				
rchard	Parkdale			Shayne			46	0.84	0.45	0.3780	0.3780	10.00	66.9433	70	252	T		CSSECT						
nayne	Orchard			Evelyn			47	1.90	0.20	0.3800	0.7580	10.00	66.9433	70	0.10	OVLD		90.00				137.3168	144	0.144
elyn	Parkdale			Shayne			48	0.27	0.20	0.0540	0.0540	10.00	66.9433	141	0.60	OVLD		320.00				137.3168	289	0.289
elyn	Daytona			Shayne			49	0.92	0.20	0.1840	0.1840	10.00	66.9433	34	0.10	OVLD		90.00				137.3168	21	0.020
ayne	Evelyn			Edgewood			50	2.37	0.20	0.4740	1.4700	10.00	66.9433	273	1.00	OVLD		90.00				137.3168	70	0.070
gewood	Parkdale			Shayne			51	0.28	0.20	0.0560	0.0560	10.00	66.9433	10	0.10	OVLD		320.00	-			137.3168	561	0.560
- 1												. 0100	55.5 100	10	0.10	UVLU		100.00				137.3168	21	0.021

		FROM MH		CTURE	TO 1411				RUNOFF			TIME OF	RAINFALL	DESIGN	N FLOW									$\overline{}$
LOCATION	NO.	INV.	APPROX.	NO.	INV.	Sani. Invert	AREA ID	AREA (ha)	COEFF C	CxA (ha)	TOTAL CxA (ha)	CONC (min)	INTENSITY i ₅ (mm/hr)	Q₅ (l/s)	SLOPE (%)	PIPE DIA (mm)	PIPE VELOCITY (m/s)	LENGTH (m)	TIME OF FLOW (min)	PIPE CAPACITY (I/s)	PERCENT FULL	RAINFALL INTENSITY i ₁₀₀ (mm/hr)	DES FLOW	FLOW
Daytona Dr	ive - Garrison to	Phillips	OOVER					il i						(8.5)	(70)		()		(min)	(115)		1100 (11110111)	(I/s)	(I/s)
Daytona	MH 14	184.170		MH 15	183.902	184,17	F0	0.40	0.45															
Orchard	Shayne	10.11.10		Daytona	100.002	104,17	52 53	0.48	0.45	0.2160		10.00	66.9433	40	0.25	375	0.80	107.00	2.22	91	44	137.3168	82	0.0
Daytona	MH 15	183.827		MH 16	183.197	183.45	54	0.73	0.45	0.3285		10.00	66.9433	61	0.10	OVLD		100.00				137,3168	125	0.1
Daytona	MH 16	183.122		MH 17	182.860	183.14	55	1.06	0.34	0.2924	0.8369	12.22	60.5879	141	0.60	450	1.40	105.00	1.25	230	61	125.2119	291	0.0
Daytona	MH 17	182.860		MH 18	182.492	182.85	56	1.01	0.34	0.3604	1.1973	13,47	57.5797	192	0.25	525	1.00	105.00	1.74	224	85	119.4506	397	0.
Daytona	MH 18	182,417		MH 19	182.237	182.47	57	0.85	0.34	0.3434 0.2890		15.21	53,8950	231	0.35	525	1.19	105.00	1,47	265	87	112.3634	481	0.2
Daytona	MH 19	182.237		MH 20	181.987	182.17	58	0.96	0.34	0.2890	1.8297	16.69	51.1689	260	0.18	600	0.93	100.00	1.79	272	96	107.0974	544	0.2
Daytona	MH 20	181.987		MH 21	181.736	180.93	59	1.03	0.34	0.3502	2.1561	18.48	48.2460	289	0.25	600	1.10	100.00	1.52	320	90	101.4281	608	0.2
dgewood	Shayne			Daytona			60	0.16	0.20	0.0320	177 (187 - 187 - 187 - 187	20.00	46.0441	321	0.25	600	1.10	100.00	1.52	321	100	97.1406	676	0.3
Daytona	MH 21	181.526		MHO	181.350			0.00	0.00	0.0000	1.5580 4.0643	10.00	66.9433	290	0.10	OVLD		100.00				137.3168	594	0.5
Daytona	MH 22			MH 23			60A, 61	1.55	0.39	0.6106	0.6106	21.51	44.0604	497	0.20	750	1.14	88.00	1.29	519	96	93.2651	1053	0.5
Daytona	MH 23			MH 24			62	0.62	0.39	0.2418	0.8524	10.00	66.9433	114	0.40	525	1.27	112.00	1.47	284	40	137.3168	233	0.0
								0.02	0.00	0.2410	0.6524	11.47	62.5838	148	0.40	525	1.27	111.00	1.46	284	52	129.0229	306	0.0
akeview Ro	oad - Orchard to	Phillips																						
	T																							
akeview	MHI	183.670		MHJ	183.435	183.67	63	0.98	0.35	0.3430	0.3430	10.00	66.9433	64	0.25	375	0.80	04.00	4.05	04			1292527	
akeview	MHJ	183.435		MHK	182,857	183.08	64	0.88	0.33	0.2904	0.6334	11.95	61.2870	108	0.55	375	1.19	94.00	1.95	91	70	137.3168	131	
akeview	MHK	182.782		MHL	182.205	182.44	65	0.92	0.33	0.3036	0.9370	13.42	57.6854	150	0.55	450	1.34	105.00	1.47	136	79	126.5478	223	
velyn	Daytona			Lakeview			66	0.30	0.20	0.0600	0.0600	10.00	66.9433	11	0.20	OVLD	1.04	90.00	1.30	133	68	119.6534	311	
akeview	MHL	182.205		мнм	181.786	181.91	67	0.77	0.34	0.2618	1.2588	14.73	54.8701	192	0.41	450	1.16	102.00	1.46	191	101	137.3168	23	
akeview	MHM	181.636		MHN	181.493	180.98	68	0.99	0.33	0.3267	1.5855	16.19	52.0526	229	0.14	600	0.82	102.00	2.07	240	96	114.2422	399	0.2
akeview	MHN	181.493		MHO	181.350	180.28	69	0.78	0.34	0.2652	1.8507	22.80	42.5199	219	0.14	600	0.82	102.00	2.07	240	91	90.2466	479 464	
dgewood	Daytona	202.000		Lakeview			70	0.30	0.20	0.0600	0.0600	10.00	66.9433	11	0.10	OVLD	0.02	90.00	2,07	240	91	137.3168	23	
akeview	Edgewood	181.350		Phillips	179.860		71	1.31	0.45	0.5895	6.5645	24.87	40.2818	735	0.50	750	1.80	310.00	2.87	821	89	85.8464	1566	0.02
																			4.01		- 00	00.0404	1500	0.7.
randview -	Orchard to Philli	ps 			. A																			
randview	MH 25	182.259	4.34	MH 26	182.063	182.31	72	0.96	0.33	0.3168	0.3168	10.00	66.9433	59	0.20	450	0.81	98.00	2.02	100		107.0100	101	
andview	MH 26	182.063	4.54	MH 27	181.671	181.88	73	0.78	0.33	0.2574	0.5742	12.02	61,1226	97	0.40	450	1.15	98.00	1.43	133	44	137.3168	121	1000000
randview	MH 27	181.671	4.93	MH 28	181.279	181.48	74	0.83	0.33	0.2739	0.8481	13.44	57.6453	136	0.40	450	1.15	98.00	1.43	188	52	126.2337	201	0.01
relyn	Lakeview			Grandview			75	0.30	0.20	0.0600	0.0600	10.00	66.9433	11	0.30	OVLD		90.00	1,40	100	72	119.5764	282	
andview	MH 28	181.279	3.02	MH 29	180.565	180.99	76	0.68	0.34	0.2312	1.1393	14.87	54.5846	173	0.70	450	1.52	102.00	1.12	249	69	137.3168 113.6925	23 360	Selection.
andview	MH 29	180.265	3.73	MH 30	180.163	180.19	77	1.02	0.34	0.3468	1,4861	15.99	52.4212	216	0.10	750	0.81	102.00	2.11	367	59	109.5189	452	0.11
andview	MH 30	180.163	3.84	MH 31	180.061	179.67	78	0.79	0.34	0.2686	1.7547	18.10	48.8305	238	0.10	750	0.81	102.00	2.11	367	65	102.5637	500	0.13
lgewood andview	Lakeview MH 31	100.001	0.04	Grandview	2000000	10010200000	79	0.30	0.20	0.0600	0.0600	10.00	66.9433	11	0.10	OVLD		90.00			- 00	137.3168	23	
andview	MH 32	180.061	2.04	MH 32	179.961	179.22	80	0.69	0.34	0.2346	2.0493	20.21	45.7508	260	0.10	750	0.81	100.00	2.07	367	71	96.5684	550	
andview	MH 33	179.961	2.14	MH 33	179.861	178.82	81	0.96	0.34	0.3264	2.3757	22.28	43.1262	285	0.10	750	0.81	100.00	2.07	367	77	91.4356	603	
andview	WITTSS	179.861	2.24	MH 34	179.761		82	0.82	0.34	0.2788	2.6545	24.35	40.8186	301	0.10	750	0.81	100.00	2.07	367	82	86.9035	641	0.27
rview - Eve	elyn to Phillips																						STOR	
irview	Evelyn			Edgewood			83	4.64	- Income		The second second													
gewood	Grandview			Fairview			84	1.61	0.45	0.7245	0.7245	10.00	66.9433	135	0.50	OVLD		300.00				137.3168	276	0.27
rview	Edgewood			Phillips	-		85	0.89	0.20	0.1780	0.1780	10.00	66.9433	33	0.10	OVLD		90.00				137.3168	68	0.06
	0			ро			00	1.14	0.20	0.2280	1.1305	10.00	66.9433	210	0.50	OVLD		310.00				137.3168	431	0.43

		FROM MH	STRUC	J.112	TO		1		RUNOFF			TIME OF	BAINEAL	DESIGN	FLOW									
LOCATION	NO.	INV.	APPROX. COVER	NO.	TO MH	Sani. Invert	AREA ID	AREA (ha)	COEFF	CxA (ha)	TOTAL CxA (ha)	TIME OF CONC (min)	RAINFALL INTENSITY i ₅ (mm/hr)	Q ₅ (I/s)	SLOPE (%)	PIPE DIA (mm)	PIPE VELOCITY (m/s)	LENGTH (m)	TIME OF FLOW (min)	PIPE CAPACITY (I/s)	PERCENT FULL	RAINFALL INTENSITY i ₁₀₀ (mm/hr)	DES FLOW Q ₁₀₀ (I/s)	OVERLA FLOV
Crescent - Ga	rrison to Phillip)s																	()	(0.0)		1,00 (1,11121117)	(1/5)	(l/s)
Orchard	Daytona			Grandview			86	1.24	0.45	0.5500	0.75													
Grandview	Garrison			Orchard			87	0.38	0.45	0.5580				104	0.20	OVLD		100.00				137.3168	213	0.21
Orchard	Grandview			Fairview			88	0.78	0.45	0.1710	0.1710	10.00		32	1.50	450		100000000000000000000000000000000000000	0.68	364	9	137.3168	65	0.00
airview	Orchard			Evelyn			89	1.06	0.45	0.4770	1.0800	10.68		195	0.50	450		180.00	2.34	210	93	133.3508	400	0.18
velyn	Grandview			Fairview			90	1.01	0.20	0.2020	1.5570 0.2020	13.02	500000000000000000000000000000000000000	254	0.70	525	1.68	320.00	3.17	375	68	121.4669	525	0.15
velyn	Fairview			Crescent			91	1.69	0.20	0.3380	2.0970	10.00		38	0.70	OVLD		90.00				137.3168	77	0.07
										0.0000	2.0370	16.19	52.0476	303	0,50	600	1.55	90.00	0.97	453	67	108.7970	634	0.18
rescent	Garrison			Orchard			92	0.51	0.45	0.2295	18.3540	23.11	42.1668	2150	0.00									
rchard	Fairview			Crescent			93	0.74	0.45	0.3330	0.3330	10.00	66.9433	62	0.90	1050	3.02	120.00	0.66	2703	80	89.5535	4566	1.86
rescent	Orchard			Evelyn			94	1.60	0.45	0.7200	19.4070	23.77	41,4354	2234	0.50	OVLD	0.05	95.00				137.3168	127	0.12
82020307												20177	71,4354	2234	0.80	1050	2.85	320.00	1.87	2548	88	88,1166	4751	2.20
rescent	Evelyn			Edgewood			95	1.52	0.45	0.6840	22.1880	25.64	39.5130	2436	0.67	1200	2.85	040.00		0000			100	
dgewood	Fairview			Crescent			96	1.56	0.20	0.3120	0.3120	10.00	66.9433	58	0.20	OVLD	2.00	310.00 90.00	1.81	3329	73	84.3309	5198	1.86
rescent	Edgewood			Phillips			97	1.44	0.45	0.6480	23.1480	27.45		2433	0.50	1500	2.86	300.00	1.75	5215		137.3168	119	0.11
rescent	Hollywood			DI W											0,00	1000	2.00	300.00	1./5	5215	47	81.0111	5209	0.00
escent	Hollywood			Phillips			98	0.95	0,45	0.4275	0.4275	10.00	66.9433	80	0.30	450	0.99	200.00	3.36	163	49	137.3168	100	0.00
d Phillips -La	akeview to Cres	cent							1										0.00	100	43	137.3166	163	0.00
nillips	Parkdale	180.579		MH EX-1	100 500																			
illips	MH EX-1	180.520			180,520			0.00	0.00	0.0000	0.0000	0.00	138.9710	0	0.14	675	0.89	40.00	0.75	328	0	270.1561	0	
illips	Daytona	180.403		Daytona MH 24	180.433 180.383	<u> </u>		0.00	0.00	0.0000	0.0000	0.00	138.9710	0	0.14	675	0.89	56.00	1.05		0	270.1561	0	
	Daytona	100.400		1011 2.4	100,363			0.00	0.00	0.0000	0.0000	0.00	138.9710	0	1.00	450	1.81	2.00	0.02		0	270.1561	0	
illips	Daytona	180.283	T T	Lakeside	180.176	1	3	0.00		i	Ť			· v								270.1001	- 0	
illips	Lakeside	180.176		Lakeview	180.056			0.00	0.00	0.0000	0.0000	0.00	138.9710	0	0.12	825	0.94	106.00	1.88	519	0	270.1561	0	
illips	Lakeview	180.026		MHQ	179.986			0.00	0.00	0.0000	0.0000	0.00	138.9710	0	0.12	825	0.94	71.00	1.26	519	0	270.1561	0	
				200,000	110000			0.00	0.00	0.0000	0.0000	0.00	138.9710	0	1.00	450	1.81	4.00	0.04	297	0	270.1561	0	
illips	Lakeview	179.831		Grandview	179.745	T	Ï	0.00	0.00	0.0000	0 00001			-9										
illips	Grandview	179.745		Fairview	179.658		105	1.39	0.20	0.2780	0.0000	0.00	138.9710	0	0.10	1050	1.01	85.00	1.41	901	0	270.1561	0	
Illips	Fairview	179.658		Crescent	179.556		106	1.54	0.20	0.3080	2.9325 4.3710	26.42	38.7720	316	0.10	1050	1.01	87.00	1.44	901	35	82.8681	675	0.000
Ilips	Crescent	179.556		MHS	179.553			0.00	0.00	0.0000	4.3710	27.86	37.4798	455	0.12	1050	1.10	83.00	1.25	987	46	80.3121	975	0.000
									0.00	0.0000	4.3710	34.02	32.8833	399	0.12	750	0.88	3.00	0.06	402	99	71.1648	864	0.461
w Phillips -Bu	uffalo to Cresce	ent																	-					
llips	Buffalo			Ferndale			99	2.98	0.20	0.5960	0.5000	10.00	00.0.00		To the second									
llips	MH D	180.587		мнн	180.499		100	0.27	0.20	0.0540	0.5960	10.00	66.9433	111	0.20	OVLD		90.00				137.3168	227	22
llips	мн н	180.424		MH 24	180.320		101	0.52	0.20	0.1040	5.3894 7.9507	25.00	40.1529	601	0.10	975	0.96	88.00	1.53	739	81	85.5925	1281	0.542
lips	MH 24	180.170		MHP	180.073		102	1.53	0.20	0.3060	9.1091	25.86	39.2997	868	0.10	1050	1.01	104.00	1.72	901	96	83.9102	1853	0.952
lips	MHP	180.073		MHQ	179.992		103	2,75	0.20	0.5500	9.6591	27.58	37.7200	955	0.10	1200	1.10	97.00	1.47	1286	74	80.7876	2044	0.758
lips	MH Q	179.842		MH 34	179.761		104	0.82	0.20	0.1640	16.3876	29.05	36.4806	979	0.10	1200	1.10	81.00	1.23	1286	76	78.3311	2102	0.815
lips	MH 34	179.761		MHR	179.668			0.00	0.20	0.0000	16.3876	30.27	35.5137	1617	0.10	1350	1.19	93.00	1.30	1761	92	76.4103	3479	1.717
lips	MHR	179.668		MHS	179.553			0.00	0.20	0.0000	16.3876	31.57	34.5484	1573	0.10	1350	1.19	88.00	1.23	1761	89	74.4889	3391	1.630
										5.5000	10.0070	32.01	33.6879	1534	0.10	1350	1.19	87.00	1.22	1761	87	72.7726	3313	1.552
ips	MHS	179.553		Outlet	179,535			0.00	0.20	0.0000	20.7586	34.02	22 2022	1000	0.10	,								
										0,0000	20.7000	34.02	32.8833	1896	0.12	1350	1.31	15.00	0.19	1929	98	71.1648	4104	2.175

UPPER CANADA CONSULTANTS
30 HANNOVER DRIVE, UNIT 3

ST. CATHARINES, ONTARIO, L2W 1A3

RAINFALL PARAMETERS:A =628.05mm/hrSEWER DESIGN:PIPE ROUGHNESS:0.013 FOR MANNING'S EQUATION2 YEAR DESIGN STORM EVENTB =6.65minutesPIPE SIZES:1.016 ACTUAL DIAMETER SIZE FACTOR

2 YEAR DESIGN STORM EVENT B = 6.65 minutes PIPE SIZES: 1.016 ACTUAL DIAMETER SIZE FACTOR TOWN OF FORT ERIE IDF C = 0.796 PERCENT FULL: TOTAL PEAK FLOW / CAPACITY

MUNICIPALITY: TOWN OF FORT ERIE

PROJECT NAME: CRESCENT ACRES STORM SEWER DESIGN SHEET

PROJECT NO.: 19106

LOCA	LOCATION				1	STORMWATE	ER ANALYSIS						STORM	I SEWER DES	SIGN	
			A	R			Time of	Flow	Rainfall	Peak		Nominal		Full Flow	Full Flow	1
DESCRIPTION	From	To	Area	Runoff		Accumulated	Concentration	Time	Intensity	Flow	Length	Diameter	Slope	Capacity	Velocity	Percent
	М.Н.	M.H.	(hectares)	Coeff.	A*R	A*R	(min)	(min.)	(mm/hr)	(L/s)	(m)	(mm.)	(%)	(L/s)	(m/s)	Full
Existing stormwater drainage areas and	concentration times from	m Philips Engine	ering North Cr	escent Park	Storm Drain	nage (July 2009) unless stated otl	nerwise.								
A1 to A22 - GARRISON ROAD			61.01	0.30	18.125	18.125	10.00	13.11	66.9	3370.3						
A92 - CRESCENT ROAD			0.51	0.45	0.230	18.354	23.11	0.66	42.2	2149.8	120.0	1050	0.90	2702.6	3.02	79.5%
A93 - ORCHARD AVENUE			0.74	0.45	0.333	0.333	10.00		66.9	61.9						
A94 - DAYTONA DRIVE			1.60	0.45	0.720	19.407	23.77	1.87	41.4	2233.7	320.0	1050	0.80	2548.0	2.85	87.7%
A86 to A91 - EVELYN AVENUE			6.16	0.34	2.097	2.097	16.19	0.97	52.1	303.2	90.0	600	0.50	452.9	1.55	66.9%
A95 - EVELYN AVENUE			1.52	0.45	0.684	22.188	25.64	1.81	39.5	2435.3	310.0	1200	0.67	3329.2	2.85	73.1%
				AVAI	LABLE CAI	PACITY IN CR	RESCENT ROAD	STORM	SEWERS =	893.9	L/s		•			
A96 - EDGEWOOD AVENUE			1.56	0.20	0.312	0.312	10.00		66.9	58.0						
A97 - CRESCENT DRIVE			1.44	0.45	0.648	23.148	27.45	1.75	37.8	2432.7	300.0	1500	0.50	5214.6	2.86	46.7%

UPPER CANADA CONSULTANTS 30 HANNOVER DRIVE, UNIT 3

ST. CATHARINES, ONTARIO, L2W 1A3

747.93 RAINFALL PARAMETERS: A = **SEWER DESIGN:** PIPE ROUGHNESS: 0.013 FOR MANNING'S EQUATION mm/hr 6.80 5 YEAR DESIGN STORM EVENT B =PIPE SIZES: 1.016 ACTUAL DIAMETER SIZE FACTOR minutes TOWN OF FORT ERIE IDF PERCENT FULL: TOTAL PEAK FLOW / CAPACITY C =0.768

TOWN OF FORT ERIE MUNICIPALITY:

PROJECT NAME: CRESCENT ACRES

PROJECT NO.: 19106

STORM SEWER DESIGN SHEET

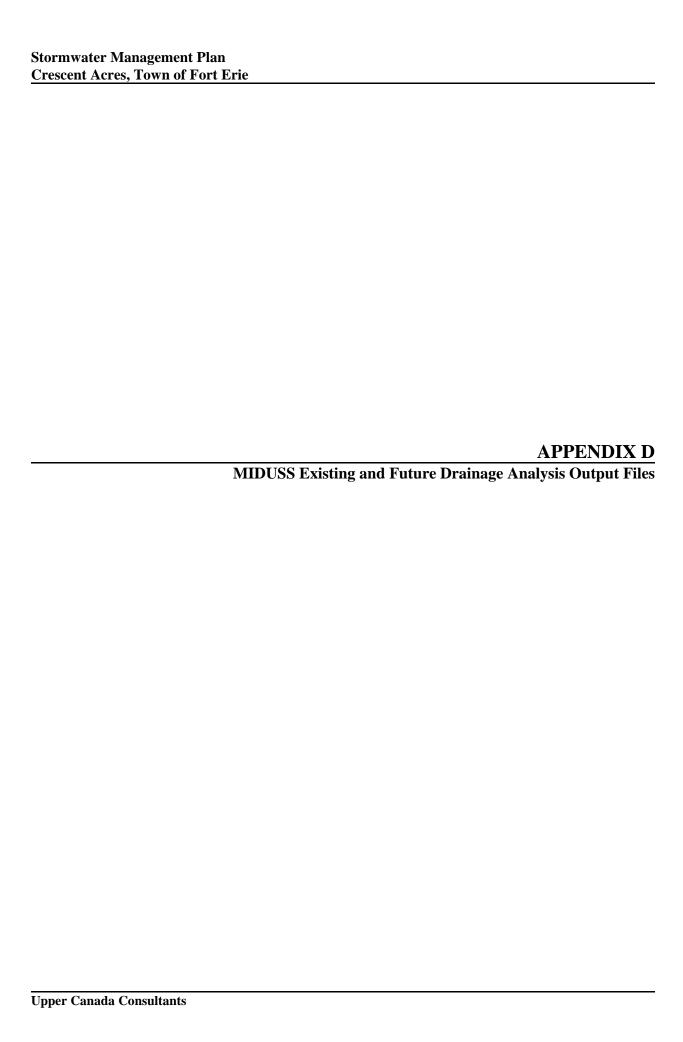
ROBLET NO.: 17100																
LOCA	ATION				;	STORMWATE	R ANALYSIS						STORM	SEWER DES	SIGN	
			A	R			Time of	Flow	Rainfall	Peak		Nominal		Full Flow	Full Flow	1
DESCRIPTION	From	To	Area	Runoff		Accumulated	Concentration	Time	Intensity	Flow	Length	Diameter	Slope	Capacity	Velocity	Percent
	M.H.	М.Н.	(hectares)	Coeff.	A*R	A*R	(min)	(min.)	(mm/hr)	(L/s)	(m)	(mm.)	(%)	(L/s)	(m/s)	Full
xisting stormwater drainage areas and concentration times from Philips Engineering North Crescent Park Storm Drainage (July 2009) unless stated otherwise.																
A1 to A22 - GARRISON ROAD			61.01	0.30	18.125	18.125	10.00	13.11	85.7	4313.1						,
A92 - CRESCENT ROAD			0.51	0.45	0.230	18.354	23.11	0.66	55.0	2804.6	120.0	1050	0.90	2702.6	3.02	103.8%
A93 - ORCHARD AVENUE			0.74	0.45	0.333	0.333	10.00		85.7	79.2						
A94 - DAYTONA DRIVE			1.60	0.45	0.720	19.407	23.77	1.87	54.1	2916.1	320.0	1050	0.80	2548.0	2.85	114.4%
A86 to A91 - EVELYN AVENUE			6.16	0.34	2.097	2.097	16.19	0.97	67.3	392.2	90.0	600	0.50	452.9	1.55	86.6%
A95 - EVELYN AVENUE			1.52	0.45	0.684	22.188	25.64	1.81	51.7	3185.3	310.0	1200	0.67	3329.2	2.85	95.7%
				AVAI	LABLE CAI	PACITY IN CR	ESCENT ROAD	STORM	SEWERS =	143.9	L/s		_			
A96 - EDGEWOOD AVENUE			1.56	0.20	0.312	0.312	10.00		85.7	74.2						
A97 - CRESCENT DRIVE			1.44	0.45	0.648	23.148	27.45	1.75	49.6	3187.3	300.0	1500	0.50	5214.6	2.86	61.1%

Upper Canada Consultants

3-30 Hannover Drive

St. Catharines, ON, L2W 1A3

PROJECT NAME: CRESCENT ACRES


PROJECT NO.: 19106

			WET POND CALCULATIONS					
Quality Requirements		Quality Orifice	Outlet Weir	Outflow Pipe Orifice	Overflow Spillway			
Drainage Area (ha) = 12.79	D:	iameter (m) = 0.150	Perimeter Length $(m) = 1.20$	Diameter (m) = 0.450	Slopes $(X:1) = 50.00$			
Normal $(m^3/ha) = 117$	(@ 60% IMP)	Cd = 0.62	Grate Slope $(X:1) = 7$	Cd = 0.63	Invert (m) = 184.21			
Perm Pool $(m^3/ha) = 77$		Invert (m) = 182.35	Inlet Elevation $(m) = 183.70$	Invert $(m) = 182.35$				
Perm Pool Vol $(m^3) = 985$				Obvert $(m) = 182.80$				
Extended Vol $(m^3) = 512$								
Required Vol $(m^3) = 1,496$								
25mm MOE Volume = 1,702		MOE Equation 4.11 I	Drawdown Coefficient 'C2' = 1,559					
Water Level Elev. = 182.35	MOE Equation 4.11 Drawdown Coefficient 'C3' = 2,076 MOE Equation 4.11 Drawdown Time (h) = 36.8							

				Average						Max	Receiving			
Elevation	Increment Depth	Active Depth	Surface Area	Surface Area	Increment Volume	Permanent Volume	Active Volume	Quality Orifice	Ditch Inlet	Pipe Orifice	Sewer Capacity	Overflow Spillway	Total Outflow	Average Discharge
	(m)	(m)	(\mathbf{m}^2)	(m^2)	(\mathbf{m}^3)	(m^3)	(m^3)	$(\mathbf{m}^3/\mathbf{s})$	$(\mathbf{m}^3/\mathbf{s})$	(m^3/s)	$(\mathbf{m}^3/\mathbf{s})$	$(\mathbf{m}^3/\mathbf{s})$	(m^3/s)	$(\mathbf{m}^3/\mathbf{s})$
181.35		-1.00	576			0								
	0.50			800	400									
181.85		-0.50	1,024			400								
	0.50			1,286	643									
182.35		0.00	1,548			1,043								
182.35		0.00	2,120				0	0.000	0.000	0.000	0.144	0.000	0.000	
	1.00			2,793	2,793									0.023
183.35		1.00	3,466				2,793	0.046	0.000	0.371	0.144	0.000	0.046	
	0.35			3,886	1,360									0.050
183.70		1.35	4,306				4,153	0.054	0.000	0.455	0.144	0.000	0.054	
	0.30			4,587	1,376									0.099
184.00		1.65	4,868				5,529	0.060	0.336	0.516	0.144	0.000	0.144	
	0.21			5,073	1,065									0.162
184.21		1.86	5,278				6,594	0.064	0.745	0.554	0.180	0.000	0.180	
	0.09			5,367	483									0.397
184.30		1.95	5,457				7,077	0.066	0.951	0.570	0.216	0.399	0.615	

Notes

- 1. Quality Orifice flow is the orifice controlling for the 24 hour detention period and uses an orifice formula.
- 2. Pipe Orifice flow is calcuated using an orifice formula on the pipe from the ditch inlet to the outlet and uses the total head on the orifice.
- 3. Overflow Weir flow is calculated using a trapezondial weir to convey outflow for less frequent storms through the embankment with an emergency spillway.
- 4. Receiving Sewer Capacity is calculated as the identified 5 year capacity available in Crescent Road storm sewers (144 L/s) where Quality Orifice plus Ditch Inlet is less that 144 L/s, and up to a maximum of 216 L/s (144 L/s + 15%) to account for pressure effects in Crescent Road storm sewer system.
- 5. Total Outflow is calculated by adding the Overflow Spillway with the lowest of Quality Orifice plus Ditch Inlet, Max Pipe Orifice, or capacity of receiving storm sewer.


```
Existing Conditions

Output File (4.7) EX.OUT opened 2022-11-02 17:06
Units used are defined by G = 9.810
24 144 10.000 are MAXDT MAXHYD & DTMIN values
Licensee: UPPER CANADA CONSULTANTS
    35
             COMMENT
             COMMENT
3 line(s) of comment
CRESCENT ACRES, FORT ERIE
STORMWATER MANAGEMENT PLAN
             EXISTING CONDITIONS COMMENT
    35
            1083.550
          .735
.400
240.000
           1.000
13.610
301.000
1.000
8.000
301.000
            ADD RUNOFF .477 .000
HYDROGRAPH DISPLAY
5 is # of Hyeto/Hydrograph chosen
Volume = .4788025E+04 c.m
    15
                                                                   .000 c.m/s
            START
1 1=Zero; 2=Define
    14
```

Proposed Conditions without SWM Output File (4.7) FUT.OUT opened 2022-11-04 11:55 Units used are defined by G = 9.810 24 144 10.000 are MAXDT MAXHYD & DTMIN values Licensee: UPPER CANADA CONSULTANTS 35 COMMENT COMMENT line(s) of comment CRESCENT ACRES, FORT ERIE STORMWATER MANAGEMENT PLAN FUTURE CONDITIONS WITHOUT SWM COMMENT 35 3 line(s) of comment 2 YEAR DESIGN STORM ********** STORM 1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic Coefficient a Constant b (min) Exponent c Fraction to peak r Duration ó 240 min 31.329 mm Total depth US 2 628.050 6.652 240.000 TMPERVIOUS Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat Option 1=SCS CN/C; 1 Manning "n" SCS Curve No or C Ia/S Coefficient Initial Abstraction 98.000 .100 TO SWM POND CATCHMENT 10.000 ID No.6 99999 ID No.6 99999 Area in hectares Length (PERV) metres Gradient (%) Per cent Impervious Length (IMPERV) %Imp. with Zero Dpth Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat Manning "n" SCS Curve No or C Ia/S Coefficient Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv .887 .000 .000 .000 c.m/s .181 .831 .571 C perv/imperv/total NOFF 12 790 292.000 1.000 60.000 292.000 .000 .250 77.000 .100 .181 ADD RUNOFF .887 .000 HYDROGRAPH DISPLAY .000 is # of Hyeto/Hydrograph chosen Volume = .2284462E+04 c.m 15 .000 c.m/s 2.7 START 1=Zero; 2=Define 35 line(s) of comment 5 YEAR DESIGN STORM *********** STORM 1=Chicago;2=Huff;3=User;4=Cdnlhr;5=Historic Coefficient a Constant b (min) Exponent c Fraction to peak r Duration 6 240 min 43.510 mm Total depth 747.930 6.800 .768 240.000 IMPERVIOUS .015 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat Manning "n" SCS Curve No or C Ia/S Coefficient .100 .518 Initial Abstraction COMMENT line(s) of comment TO SWM POND CATCHMENT 10.000 12.790 ID No.ó 99999 ID No.6 99999 Area in hectares Length (PERV) metres Gradient (%) Per cent Impervious Length (IMPERV) % Imp. with Zero Dpth Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat Manning "n" SCS Curve No or C Ia/S Coefficient Initial Abstraction 292.000 1 000 292.000 .000 .250 .100 Initial Abstraction Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv 1.246 .000 .000 .000 c.m/s .265 .877 .632 C perv/imperv/total

15

27 14 ADD RUNOFF 1 246

START

1.246

HYDROGRAPH DISPLAY

is # of Hyeto/Hydrograph chosen
Volume = .3518997E+04 c.m

1=Zero; 2=Define

.000

.000 c.m/s

```
35
            COMMENT
           3 line(s) of comment
            100 YEAR DESIGN STORM
            STORM
                              1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic
Coefficient a
Constant b (min)
Exponent c
Fraction to peak r
Duration 6 240 min
75.641 mm Total depth
       1083.550
             6.618
         .735
.400
240.000
 3
            IMPERVIOUS
                              S
Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
Manning "n"
SCS Curve No or C
Ia/S Coefficient
Initial Abstraction
           98.000
            .100
.518
COMMENT
           3 line(s) of comment
             TO SWM POND
          CATCHMENT
10.000
                               ID No.ó 99999
                      12 790
         292.000
1.000
60.000
         292.000
               .000
                .250
           77.000
                100
            ADD RUNOFF
2.089
CATCHMENT
15
                                           2.089
                                                                   .000
                                                                                        .000 c.m/s
                               ID No.6 99999
Area in hectares
Length (PERV) metres
Gradient (%)
Per cent Impervious
           10.000
                810
           73.000
           1.000
15.000
                              Graute...
Per cent Impervious
Length (IMPERV)
% Imp. with Zero Dpth
Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
Manning "n"
SCS Curve No or C
Ia/S Coefficient
Initial Abstraction
Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
156 2.089 .000 .000 c.m/s
125 .915 .498 C perv/imperv/total
           73.000
               .000
                . 250
           77 000
                         .056
            .425 .915 .498
ADD RUNOFF
.056 2.140 .000
HYDROGRAPH DISPLAY
5 is # of Hyeto/Hydrograph chosen
Volume = .7310660E+04 c.m
15
                                                                                        .000 c.m/s
27
                     1=Zero; 2=Define
```

Prop	osed Conditions with SWM	10	POND 6 Depth - Discharge - Volume sets
тор	Output File (4.7) SWM.OUT opened 2022-11-02 17:06		182.350 .000 .0
	Units used are defined by G = 9.810 24 144 10.000 are MAXDT MAXHYD & DTMIN values		183.700 .0540 4153.0
35	Licensee: UPPER CANADA CONSULTANTS COMMENT		184.000 .144 5529.0 184.210 .180 6594.0
35	3 line(s) of comment		184.300 .615 7077.0
	CRESCENT ACRES, FORT ERIE STORMWATER MANAGEMENT PLAN		Peak Outflow = .030 c.m/s Maximum Depth = 183.011 metres
	FUTURE CONDITIONS WITH SWM		Maximum Storage = 1846. c.m
35	COMMENT 3 line(s) of comment	14	.887 .887 .030 .000 c.m/s
	*********		1 1=Zero; 2=Define
	25mm DESIGN STORM ************************************	35	COMMENT 3 line(s) of comment
2	STORM		***********
	1 1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic 512.000 Coefficient a		5 YEAR DESIGN STORM ************************************
	6.000 Constant b (min)	2	STORM
	.800 Exponent c .400 Fraction to peak r		1 l=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic 747.930 Coefficient a
	240.000 Duration ó 240 min		6.800 Constant b (min)
3	25.036 mm Total depth IMPERVIOUS		.768 Exponent c .400 Fraction to peak r
,	<pre>1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat</pre>		240.000 Duration ó 240 min
	.015 Manning "n" 98.000 SCS Curve No or C	3	43.510 mm Total depth IMPERVIOUS
	.100 Ia/S Coefficient		1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
35	.518 Initial Abstraction		.015 Manning "n" 98.000 SCS Curve No or C
33	<pre>3 line(s) of comment</pre>		.100 Ia/S Coefficient
	**************************************	35	.518 Initial Abstraction
	**********		3 line(s) of comment
4	CATCHMENT 10.000 ID No.6 99999		**************************************
	12.790 Area in hectares		**********
	292.000 Length (PERV) metres	4	CATCHMENT 10.000 ID No.6 99999
	1.000 Gradient (%) 60.000 Per cent Impervious		12.790 Area in hectares
	292.000 Length (IMPERV)		292.000 Length (PERV) metres
	.000 %Imp. with Zero Dpth 1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat		1.000 Gradient (%) 60.000 Per cent Impervious
	.250 Manning "n"		292.000 Length (IMPERV)
	77.000 SCS Curve No or C .100 Ia/S Coefficient		.000 %Imp. with Zero Dpth 1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
	7.587 Initial Abstraction		.250 Manning "n"
	<pre>1 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv</pre>		77.000 SCS Curve No or C .100 Ia/S Coefficient
	.679 .000 .000 c.m/s .130 .801 .533 C perv/imperv/total		7.587 Initial Abstraction
15	ADD RUNOFF		1 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
27	.679 .679 .000 .000 c.m/s HYDROGRAPH DISPLAY		1.246 .000 .030 .000 c.m/s .265 .877 .632 C perv/imperv/total
2.7	5 is # of Hyeto/Hydrograph chosen	15	ADD RUNOFF
10	Volume = .1702490E+04 c.m POND	27	1.246 1.246 .030 .000 c.m/s HYDROGRAPH DISPLAY
10	6 Depth - Discharge - Volume sets		5 is # of Hyeto/Hydrograph chosen
	182,350 .000 .0 183,350 .0460 2793.0	10	Volume = .3519148E+04 c.m POND
	183.700 .0540 4153.0		6 Depth - Discharge - Volume sets
	184.000 .144 5529.0		182.350 .000 .0 183.350 .0460 2793.0
	184.210 .180 6594.0 184.300 .615 7077.0		183.700 .0540 4153.0
	Peak Outflow = .023 c.m/s		184.000 .144 5529.0 184.210 .180 6594.0
	Maximum Depth = 182.841 metres Maximum Storage = 1372. c.m		184.300 .615 7077.0
	.679 .679 .023 .000 c.m/s		Peak Outflow = .046 c.m/s
14	START 1 1=Zero; 2=Define		Maximum Depth = 183.366 metres Maximum Storage = 2855.c.m
35	COMMENT	1.4	1.246 1.246 .046 .000 c.m/s
	<pre>3 line(s) of comment ************************************</pre>	14	START 1 1=Zero; 2=Define
	2 YEAR DESIGN STORM	35	COMMENT
2	**************************************		<pre>3 line(s) of comment ************************************</pre>
2	<pre>1 1=Chicago;2=Huff;3=User;4=Cdn1hr;5=Historic</pre>		100 YEAR DESIGN STORM
	628.050 Coefficient a 6.652 Constant b (min)	2	**************************************
	6.652 Constant b (min) .796 Exponent c		<pre>1 1=Chicago; 2=Huff; 3=User; 4=Cdn1hr; 5=Historic</pre>
	.400 Fraction to peak r		1083.550 Coefficient a 6.618 Constant b (min)
	240.000 Duration ó 240 min 31.329 mm Total depth		.735 Exponent c
3	IMPERVIOUS		.400 Fraction to peak r 240.000 Duration ó 240 min
	1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat .015 Manning "n"		75.641 mm Total depth
	98.000 SCS Curve No or C	3	IMPERVIOUS 1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat
	.100 Ia/S Coefficient .518 Initial Abstraction		1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat .015 Manning "n"
35	COMMENT		98.000 SCS Curve No or C
	<pre>3 line(s) of comment ************************************</pre>		.100 Ia/S Coefficient .518 Initial Abstraction
	TO SWM POND	35	COMMENT
4	**************************************		<pre>3 line(s) of comment ************************************</pre>
4	10.000 ID No.6 99999		TO SWM POND
	12.790 Area in hectares	4	**************************************
	292.000 Length (PERV) metres 1.000 Gradient (%)	•	10.000 ID No.ó 99999
	60.000 Per cent Impervious		12.790 Area in hectares 292.000 Length (PERV) metres
	292.000 Length (IMPERV) .000 %Imp. with Zero Dpth		1.000 Gradient (%)
	1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat		60.000 Per cent Impervious
	.250 Manning "n" 77.000 SCS Curve No or C		292.000 Length (IMPERV) .000 %Imp. with Zero Dpth
	.100 Ia/S Coefficient		<pre>1 Option 1=SCS CN/C; 2=Horton; 3=Green-Ampt; 4=Repeat</pre>
	7.587 Initial Abstraction 1 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv		.250 Manning "n" 77.000 SCS Curve No or C
	.887 .000 .023 .000 c.m/s		.100 Ia/S Coefficient
15	.181 .831 .571 C perv/imperv/total		7.587 Initial Abstraction 1 Option 1=Trianglr; 2=Rectanglr; 3=SWM HYD; 4=Lin. Reserv
15	ADD RUNOFF .887 .023 .000 c.m/s		2.089 .000 .046 .000 c.m/s
27	HYDROGRAPH DISPLAY	15	.425 .923 .724 C perv/imperv/total ADD RUNOFF
	5 is # of Hyeto/Hydrograph chosen Volume = .2286383E+04 c.m		2.089 2.089 .046 .000 c.m/s
		27	HYDROGRAPH DISPLAY 5 is # of Hyeto/Hydrograph chosen
			Volume = .7005564E+04 c.m